题目内容
如图,菱形纸片ABCD中,∠A=60°,将纸片折叠,点A、D分别落在A′、D′处,且A′D′经过B,EF为折痕,当D′F⊥CD时,
的值为______.

| CF |
| FD |
延长DC与A′D′,交于点M,
∵在菱形纸片ABCD中,∠A=60°,
∴∠DCB=∠A=60°,AB∥CD,
∴∠D=180°-∠A=120°,
根据折叠的性质,可得∠A′D′F=∠D=120°,
∴∠FD′M=180°-∠A′D′F=60°,
∵D′F⊥CD,
∴∠D′FM=90°,∠M=90°-∠FD′M=30°,
∵∠BCM=180°-∠BCD=120°,
∴∠CBM=180°-∠BCM-∠M=30°,
∴∠CBM=∠M,
∴BC=CM,
设CF=x,D′F=DF=y,
则BC=CM=CD=CF+DF=x+y,
∴FM=CM+CF=2x+y,
在Rt△D′FM中,tan∠M=tan30°=
=
=
,
∴x=
y,
∴
=
=
.
故答案为:
.
∵在菱形纸片ABCD中,∠A=60°,
∴∠DCB=∠A=60°,AB∥CD,
∴∠D=180°-∠A=120°,
根据折叠的性质,可得∠A′D′F=∠D=120°,
∴∠FD′M=180°-∠A′D′F=60°,
∵D′F⊥CD,
∴∠D′FM=90°,∠M=90°-∠FD′M=30°,
∵∠BCM=180°-∠BCD=120°,
∴∠CBM=180°-∠BCM-∠M=30°,
∴∠CBM=∠M,
∴BC=CM,
设CF=x,D′F=DF=y,
则BC=CM=CD=CF+DF=x+y,
∴FM=CM+CF=2x+y,
在Rt△D′FM中,tan∠M=tan30°=
| D′F |
| FM |
| y |
| 2x+y |
| ||
| 3 |
∴x=
| ||
| 2 |
∴
| CF |
| FD |
| x |
| y |
| ||
| 2 |
故答案为:
| ||
| 2 |
练习册系列答案
相关题目