ÌâÄ¿ÄÚÈÝ
ÒÑÖª¹ØÓÚxµÄÒ»Ôª¶þ´Î·½³Ìx2
(2k+3)x+k2+3k+2=0
£¨1£©ÊÔÅжÏÉÏÊö·½³Ì¸ùµÄÇé¿ö£»
£¨2£©ÈôÒÔÉÏÊö·½³ÌµÄÁ½¸ö¸ùΪºá×ø±ê¡¢×Ý×ø±êµÄµãÇ¡ÔÚ·´±ÈÀýº¯Êý
µÄͼÏóÉÏ£¬ÇóÂú×ãÌõ¼þµÄmµÄ×îСֵ£»
£¨3£©ÒÑÖª¡÷ABCµÄÁ½±ßAB¡¢ACµÄ³¤ÊǹØÓÚÉÏÊö·½³ÌµÄÁ½¸öʵÊý¸ù£¬BCµÄ³¤Îª5£®
¢Ùµ±kΪºÎֵʱ£¬¡÷ABCÊÇÒÔBCΪб±ßµÄÖ±½ÇÈý½ÇÐÎ?
¢Úµ±kΪºÎֵʱ£¬¡÷ABCÊǵÈÑüÈý½ÇÐÎ?ÇëÇó³ö´Ëʱ¡÷ABCµÄÖܳ¤£®
£¨1£©ÊÔÅжÏÉÏÊö·½³Ì¸ùµÄÇé¿ö£»
£¨2£©ÈôÒÔÉÏÊö·½³ÌµÄÁ½¸ö¸ùΪºá×ø±ê¡¢×Ý×ø±êµÄµãÇ¡ÔÚ·´±ÈÀýº¯Êý
£¨3£©ÒÑÖª¡÷ABCµÄÁ½±ßAB¡¢ACµÄ³¤ÊǹØÓÚÉÏÊö·½³ÌµÄÁ½¸öʵÊý¸ù£¬BCµÄ³¤Îª5£®
¢Ùµ±kΪºÎֵʱ£¬¡÷ABCÊÇÒÔBCΪб±ßµÄÖ±½ÇÈý½ÇÐÎ?
¢Úµ±kΪºÎֵʱ£¬¡÷ABCÊǵÈÑüÈý½ÇÐÎ?ÇëÇó³ö´Ëʱ¡÷ABCµÄÖܳ¤£®
£¨1£©ÓÐÁ½¸ö²»ÏàµÈµÄʵÊý¸ù£»£¨2£©
£»£¨3£©¢Ù2»ò3£»¢Úk=3»ò4£¬Öܳ¤Îª14ºÍ16
ÊÔÌâ·ÖÎö£º£¨1£©ÏÈÓÉÌâÒâÇóµÃ¸ùµÄÅбðʽ¡÷
£¨2£©Éè·½³Ìx2
£¨3£©¢ÙÓÉÌâÒâ¿ÉµÃx1="k" +1£¬x2=k+2£®²»·ÁÉèAB=k+1£¬AC=k+2£®ÔÙ¸ù¾Ý¹´¹É¶¨Àí¼´¿ÉÁз½³ÌÇó½â£»
¢Ú·ÖAC=BC=5ÓëAB=BC=5Á½ÖÖÇé¿ö£¬½áºÏµÈÑüÈý½ÇÐεÄÐÔÖÊÇó½â¼´¿É.
£¨1£©ÓÉ·½³Ìx2
£¨2£©Éè·½³Ìx2
ÓÖÓÉÒ»Ôª¶þ´Î·½³Ì¸ùÓëϵÊýµÄ¹ØÏµµÃ£¬
ËùÒÔ£¬µ±k£½
£¨3£©¢Ùx1="k" +1£¬x2=k+2£®²»·ÁÉèAB=k+1£¬AC=k+2£®
½âµÃk1=2£¬k2=
¢Ú
ÓÉ£¨1£©ÖªAB¡ÙAC
¹ÊÓÐÁ½ÖÖÇé¿ö£º
£¨¢ñ£©µ±AC=BC=5ʱ£¬k+2=5£¬k=3£®
¡ß5¡¢5¡¢4ÄÜ×é³ÉÈý½ÇÐΣ¬
£¨¢ò£©µ±AB=BC=5ʱ£¬k+1=5£¬k=4£®
¡ß5¡¢5¡¢6ÄÜ×é³ÉÈý½ÇÐΣ¬
¹Ê¡÷ABCµÄÖܳ¤·Ö±ðÊÇ14ºÍ16£®
µãÆÀ£º½âÌâµÄ¹Ø¼üÊÇÊì¼ÇÒ»Ôª¶þ´Î·½³Ì¸ùµÄÇé¿öÓëÅбðʽ¡÷
Á·Ï°²áϵÁдð°¸
Ïà¹ØÌâÄ¿