题目内容

在△ABC中,AB=AC,∠BAC=80°,P在△ABC中,∠PBC=10°,∠PCB=20°,则∠PAB的度数为


  1. A.
    50°
  2. B.
    60°
  3. C.
    70°
  4. D.
    65°
B
分析:要求∠PAB,题中已知没有能直接求出的条件,故可作P关于AC的对称点P′,连接AP′、P'C、PP',得出A、B、C、P'四点共圆,从而求得∠PAB的度数.
解答:解:如图,作P关于AC的对称点P′,连接AP′、P′C、PP′,
则P′C=PC,ACP′=∠ACP.
∵AB=AC,∠BAC=80°,
∴∠ABC=∠ACB=50°,
又∵∠PBC=10°,∠PCB=20°,
∴∠BPC=150°,∠ACP=30°,∠ACP′=30°,
∴∠PCP′=60°,
∴△PCP′是等边三角形,
∴PP′=PC,∠P′AC=∠PAC,∠P′PC=60°,
∴∠BPP′=360°-150°-60°=150°,
∴∠BPP′=∠BPC,
∴△PBP′≌△PBC,
∴∠PBP′=∠PBC=10°,
∴∠P′BC=20°,∠ABP′=30° 又∠ACP′=30°,
∴∠ABP′=∠ACP′,
∴A、B、C、P′四点共圆,
∴∠PAC=∠P′AC=∠P′BC=20°,
∴∠PAB=60°.
故选B.
点评:本题考查了等腰三角形的性质,等边三角形的性质及全等三角形的判定,难度较大.辅助线的作出是解答本题的关键.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网