题目内容

如果一个正多边形的内角和等于720°,那么这个正多边形是


  1. A.
    正六边形
  2. B.
    正五边形
  3. C.
    正方形
  4. D.
    正三角形
A
分析:根据正多边形的内角和定义(n-2)×180°列方程求解.
解答:(n-2)×180°=720°,
n-2=4,
∴n=6.
故选A.
点评:运用了正多边形的内角和的公式.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网