题目内容
【题目】已知一次函数
,
,
,
.
(1)说明点
在直线
上;
(2)当直线
经过点
时,点
时直线
上的一点,若
,求点
的坐标.
【答案】(1)详见解析;(2)点
坐标为
,(
,5).
【解析】
(1)将x=2代入y=kx+3-2k,求出y=3,由此即可证出点M(2,3)在直线y=kx+3-2上;
(2)根据点C的坐标利用待定系数法求出此时直线的解析式,由此可设点P的坐标为(m,
m),再根据S△BCP=2S△ABC,即可得出关于m的含绝对值符号的一元一次方程,解方程求出m的值,将其代入P点坐标即可得出结论.
证明:∵y=kx+3-2k,
∴当x=2时,y=2k+3-2k=3,
∴点M(2,3)在直线y=kx+3-2k上;
(2)解:将点C(-2,-3)代入y=kx+3-2k,
得:-3=-2k+3-2k,解得:k=
,
此时直线CM的解析式为y=
x.
设点P的坐标为(m,
m).
∵S△BCP=
BC|yP-yB|,S△ABC=
BC|yA-yC|,S△BCP=2S△ABC,
∴|
m-(-3)|=2×[1-(-3)],
解得:m1=
或m2=
,
∴点P的坐标为(
,-11)或(
,5).
【题目】如图,正方形ABCD中,BD为对角线.
(1)尺规作图:作CD边的垂直平分线EF,交CD于点E,交BD于点F(保留作图痕迹,不要求写作法);
(2)在(1)的条件下,若AB=4,求△DEF的周长.
![]()
【题目】学校食堂厨房的桌子上整齐地摆放着若干相同规格的碟子,碟子的个数与碟子的高度的关系如下表:
碟子的个数 | 碟子的高度(单位:cm) |
1 | 2 |
2 | 2+1.5 |
3 | 2+3 |
4 | 2+4.5 |
… | … |
![]()
(1)当桌子上放有x(个)碟子时,请写出此时碟子的高度(用含x的式子表示);
(2)分别从三个方向上看,其三视图如上图所示,厨房师傅想把它们整齐叠成一摞,求叠成一摞后的高度.