题目内容

如图,正方形ABCD,点P是对角线AC上一点,连接BP,过P作PQ⊥BP,PQ交CD于Q,若AP=2数学公式,CQ=5,则正方形ABCD的面积为________.

81
分析:作PE⊥AD与E,过点P作FG⊥CD于G,交AB于F,根据已知条件以及正方形ABCD的性质,易证明四边形AEPF是正方形,则其边长是2,易证得△PQG≌△BPF,则QG=PF=2,则大正方形的边长是9,进而可得其面积.
解答:解:作PE⊥AD与E,过点P作PF⊥AB于F,延长FP交CD于G,
∵正方形ABCD,
∴∠DAC=∠BAC=45°,∠DAB=90°=∠PEA=∠PFA,
∴PE=PF,
∴四边形AEPF是正方形,
∴AE=PE=PF=AF,
∵AP=2,由勾股定理得:AE2+PE2=
∴AE=PE=PF=AF=2,
∴PG=BF,且∠PFB=∠PGQ=90°;
∵∠FBP+∠FPB=90°,
∴∠FBP=∠GPQ,
在△PQG和△BPF中

∴△PQG≌△BPF,则QG=PF=2,
∴AB=BC=CD=2+2+5=9,
则大正方形的边长是9,即面积是81;故答案为81.
点评:此题主要是通过作辅助线构造正方形和全等三角形,然后求得大正方形的边长.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网