题目内容
如图,是抛物线y=ax2+bx+c的一部分,其对称轴为直线x=1,它与x轴的一个交点为A(3,0),根据图象,可知关于x的一元二次方程ax2+bx+c=0的解是 .
如图,在△ABC中,∠C=90°,点E是AC上的点,且∠1=∠2,DE垂直平分AB,垂足是D,如果EC=3cm,则AE等于( )
A.3cm B.4cm C.6cm D.9cm
如图,在△ABC中,AB=AC=10,点D是边BC上一动点(不与B,C重合),∠ADE=∠B=α,DE交AC于点E,且cosα=.下列结论:①△ADE∽△ACD;②当BD=6时,△ABD与△DCE全等;③△DCE为直角三角形时,BD为8或;④0<CE≤6.4.其中正确的结论是______________.(填序号)
(本题满分分)已知在平面直角坐标系中,点是抛物线上的一个动点,点的坐标为.
(1).如图1,直线过点且平行于轴,过点作,垂足为,连接,猜想与的大小关系: ______ (填写“>”“<”或“=” ),并证明你的猜想.
(2).请利用(1)的结论解决下列问题:
①.如图2,设点的坐标为, 连接,问是否存在最小值?如果存在,请说明理由,并求出点的坐标;如果不存在,请说明理由.
②.若过动点和点的直线交抛物线于另一点,且,求直线的解析式(图3为备用图).
(1)解方程: ;
(2)解不等式组.
若关于的一元二次方程的一个根是,则的值为__.
抛物线y=﹣5x2﹣x+9与y轴的交点坐标为( )
A.(9,0) B.(﹣9,0) C.(0,﹣9) D.(0,9)
48°39′+67°41′=__, 105.48°=___°____′_____〞.
如图,是一次函数y=kx+b与反比例函数y=的图象,则关于x的方程kx+b=的解为__.