题目内容
(1)如图,在△ABC中,∠ABC、∠ACB的平分线相交于F,过F作DE∥BC,分别交AB、AC于点D、E.判断DE=DB+EC是否成立?为什么?
(2)如图,若点F是∠ABC的平分线和外角∠ACG的平分线的交点,其他条件不变,请猜想线段DE、DB、EC之间有何数量关系?证明你的猜想.
解:(1)成立;
∵△ABC中BF、CF平分∠ABC、∠ACB,
∴∠1=∠2,∠5=∠4.
∵DE∥BC,∴∠2=∠3,∠4=∠6.
∴∠1=∠3,∠6=∠5.
根据在同一个三角形中,等角对等边的性质,可知:BD=DF,EF=CE.
∴DE=DF+EF=BD+CE.
故成立.
(2)∵BF分∠ABC,
∴∠DBF=∠FBC.
∵DF∥BC,∴∠DFB=∠FBC.
∴∠ABF=∠DFB,
∴BD=DF.
∵CF平分∠ACG,
∴∠ACF=∠FCG.
∵DF∥BC,
∴∠DFC=∠FCG.
∴∠ACF=∠DFC,
∴CE=EF.
∵EF+DE=DF,即DE+EC=BD.
练习册系列答案
相关题目