题目内容

【题目】已知:如图,二次函数y=ax2+bx+c的图象与x轴交于A、B两点,其中A点坐标为(﹣1,0),点C(0,5),另抛物线经过点(1,8),M为它的顶点.

(1)求抛物线的解析式;
(2)求△MCB的面积SMCB

【答案】
(1)解:依题意:

解得

∴抛物线的解析式为y=﹣x2+4x+5


(2)解:令y=0,得(x﹣5)(x+1)=0,x1=5,x2=﹣1,

∴B(5,0).

由y=﹣x2+4x+5=﹣(x﹣2)2+9,得M(2,9)

作ME⊥y轴于点E,

可得SMCB=S梯形MEOB﹣SMCE﹣SOBC= (2+5)×9﹣ ×4×2﹣ ×5×5=15.


【解析】(1)把三个点的坐标代入,用待定系数法求出抛物线的解析;(2)根据抛物线的解析求出顶点M的坐标,求出SMCB=S梯形MEOB﹣SMCE﹣SOBC的值.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网