题目内容
在Rt△ABC中,∠C=90°,AC=3,BC=4.(1)求AB的长;
(2)如图,已知P为BC的中点,以P为圆心的⊙P与AB相切于点D.若以C为圆心的⊙C与⊙P相切,求⊙C的半径.
【答案】分析:(1)根据勾股定理进行计算;
(2)注意分情况讨论:两圆相切,可能内切,也可能外切.根据两圆的位置关系与数量之间的联系,主要是求得⊙P的半径,再进一步进行分析即可.
解答:解:(1)∵C=90°,AC=3,BC=4,
∴AB=5;
(2)根据题意,得PC=PB=2,
连接PD,则PD⊥AB,
∵∠BDP=∠C=90°,又∠B=∠B,
∴△ABC∽△PBD.
∴
,PD=1.2.即该圆的半径是1.2.
点评:熟练运用勾股定理,掌握相似三角形的判定和性质,能够根据相似三角形的性质得到比例式,从而进行计算.
(2)注意分情况讨论:两圆相切,可能内切,也可能外切.根据两圆的位置关系与数量之间的联系,主要是求得⊙P的半径,再进一步进行分析即可.
解答:解:(1)∵C=90°,AC=3,BC=4,
∴AB=5;
(2)根据题意,得PC=PB=2,
连接PD,则PD⊥AB,
∵∠BDP=∠C=90°,又∠B=∠B,
∴△ABC∽△PBD.
∴
点评:熟练运用勾股定理,掌握相似三角形的判定和性质,能够根据相似三角形的性质得到比例式,从而进行计算.
练习册系列答案
相关题目
在Rt△ABC中,已知a及∠A,则斜边应为( )
| A、asinA | ||
B、
| ||
| C、acosA | ||
D、
|
| A、9:4 | B、9:2 | C、3:4 | D、3:2 |