题目内容
(本题满分8分)(1)解不等式组:;
(2)解方程:.
已知四边形ABCD是平行四边形,再从①AB=BC,②∠ABC=90°,③AC=BD,④AC⊥BD四个条件中选两个作为补充条件后,使得四边形ABCD是正方形,现有下列四种选法,其中错误的是( )
A.选①② B.选选①③ C.选②③ D.选②④
(本题8分)先化简,再求值:,
其中x满足x2﹣x﹣1=0.
从正面观察下图所示的两个物体,看到的是( ).
(本题满分10分)某学校开展“青少年科技创新比赛”活动,“喜洋洋”代表队设计了一个遥控车沿直线轨道AC做匀速直线运动的模型.甲、乙两车同时分别从A,B出发,沿轨道到达C处,B在AC上,甲的速度是乙的速度的1.5倍,设t(分)后甲、乙两遥控车与B处的距离分别为d1,d2,则d1,d2与t的函数关系如图,试根据图象解决下列问题:
(1)填空:乙的速度v2= 米/分;
(2)写出d1与t的函数关系式;
(3)若甲、乙两遥控车的距离超过10米时信号不会产生相互干扰,试探求什么时间两遥控车的信号不会产生相互干扰?
一组数据3,5,7,8,4,7的中位数是 .
如图,RtΔABC中,AB=9,BC=6,∠B=900,将ΔABC折叠,使A点与BC的中点D重合,折痕为MN,则线段BN的长为( ).
A、 B、 C、4 D、5
如图,四边形ABCD中,AD//BC,,E为AB上一点,分别以ED,EC为折痕将两个角(∠A,∠B)向内折起,点A,B恰好落在CD边的点F处.若AD=5,BC=9,则EF=____.
(本题满分9分)已知矩形OABC中,OA=3,AB=6,以OA、OC所在的直线为坐标轴,建立如图所示的平面直角坐标系。将矩形OABC绕点O顺时针方向旋转,得到矩形ODEF,当点B在直线DE上时,设直线DE和轴交于点P,与轴交于点Q.
(1)求证:△BCQ≌△ODQ;
(2)求点P的坐标;