题目内容
圆内接四边形ABCD的四条边长顺次为:AB=2,BC=7,CD=6,DA=9,则四边形的面积为________.
30
分析:首先根据勾股定理的逆定理判断△BCD与△DAB都是直角三角形,则四边形的面积为两个直角三角形的面积和.
解答:由于72+62=85=92+22,
即BC2+CD2=DA2+AB2,
所以△BCD与△DAB都是直角三角形,
因此,四边形面积=
.
故答案为:30.
点评:本题考查勾股定理的逆定理的应用,判断△BCD与△DAB都是直角三角形是关键.
分析:首先根据勾股定理的逆定理判断△BCD与△DAB都是直角三角形,则四边形的面积为两个直角三角形的面积和.
解答:由于72+62=85=92+22,
即BC2+CD2=DA2+AB2,
所以△BCD与△DAB都是直角三角形,
因此,四边形面积=
故答案为:30.
点评:本题考查勾股定理的逆定理的应用,判断△BCD与△DAB都是直角三角形是关键.
练习册系列答案
相关题目