题目内容
把x2(x+1)-y(xy+x)分解因式为( )
| A.x(x-y)(x+y+1) | B.x(x+y)(x-y+1) | C.x(x-y)(x-y-1) | D.x(x-y)(x+y-1) |
x2(x+1)-y(xy+x)
=x2(x+1)-xy(y+1)
=x(x2+x-y2-y)
=x[(x2-y2)+(x-y)]
=x[(x+y)(x-y)+(x-y)]
=x(x-y)(x+y+1).
故选A.
=x2(x+1)-xy(y+1)
=x(x2+x-y2-y)
=x[(x2-y2)+(x-y)]
=x[(x+y)(x-y)+(x-y)]
=x(x-y)(x+y+1).
故选A.
练习册系列答案
相关题目