题目内容
如图,在等腰Rt△ABC的斜边AB上取两点M,N,使∠MCN=45°,记AM=m,MN=n,BN=x,则以线段x、m、n为边长的三角形的形状是
- A.锐角三角形
- B.直角三角形
- C.钝角三角形
- D.随x、m、n的变化而改变
B
分析:把△ACN绕C点逆时针旋转45°,得△CBD,这样∠ACM+∠BCN=45°就集中成一个与∠MCN相等的角,在一条直线上的m、x、n集中为△DNB,只需判定△DNB的形状即可.
解答:如图:作△ACM≌△BCD,
∴∠ACM=∠BCD,CM=CD,∠MCN=∠NCD=45°,
又∵CN=CN,
∴△MNC≌△DNC,MN=ND,AM=BD=m,
又∠DBN=45°+45°=90°,
∴n2+m2=x2.
故选B.
点评:本题考查等腰直角三角形的性质,难度较大,注意掌握旋下列情形常实施旋转变换:(1)图形中出现等边三角形或正方形,把旋转角分别定为60°、90°;(2)图形中有线段的中点,将图形绕中点旋转180°,构造中心对称全等三角形;(3)图形中出现有公共端点的线段,将含有相等线段的图形绕公共端点,旋转两相等线段的夹角后与另一相等线段重合.
分析:把△ACN绕C点逆时针旋转45°,得△CBD,这样∠ACM+∠BCN=45°就集中成一个与∠MCN相等的角,在一条直线上的m、x、n集中为△DNB,只需判定△DNB的形状即可.
解答:如图:作△ACM≌△BCD,
∴∠ACM=∠BCD,CM=CD,∠MCN=∠NCD=45°,
又∵CN=CN,
∴△MNC≌△DNC,MN=ND,AM=BD=m,
又∠DBN=45°+45°=90°,
∴n2+m2=x2.
故选B.
点评:本题考查等腰直角三角形的性质,难度较大,注意掌握旋下列情形常实施旋转变换:(1)图形中出现等边三角形或正方形,把旋转角分别定为60°、90°;(2)图形中有线段的中点,将图形绕中点旋转180°,构造中心对称全等三角形;(3)图形中出现有公共端点的线段,将含有相等线段的图形绕公共端点,旋转两相等线段的夹角后与另一相等线段重合.
练习册系列答案
相关题目
①△DFE是等腰直角三角形;
②四边形CDFE不可能为正方形,
③DE长度的最小值为4;
④四边形CDFE的面积保持不变;
⑤△CDE面积的最大值为8.
其中正确的结论是( )
| A、①②③ | B、①④⑤ | C、①③④ | D、③④⑤ |