题目内容

如图,在平行四边形ABCD中,对角线AC,BD相交于点O,点E,F分别是边AD,AB的中点,EF交AC于点H,则的值为(  )

 

A.

1

B.

C.

D.

考点:

三角形中位线定理;平行四边形的性质.

分析:

根据三角形的中位线平行于第三边并且等于第三边的一半求出H是AO的中点,再根据平行四边形的对角线互相平分可得AO=CO,然后求出CH=3AH,再求解即可.

解答:

解:∵点E,F分别是边AD,AB的中点,

∴AH=HO,

∵平行四边形ABCD的对角线AC、BD相交于点O,

∴AO=CO,

∴CH=3AH,

=

故选C.

点评:

本题考查了平行四边形对角线互相平分的性质,三角形的中位线平行于第三边并且等于第三边的一半,熟记各性质是解题的关键.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网