题目内容
等腰三角形的顶角为80°,则它的底角的度数是:
A、20° B、50° C、60° D、80°
小明遇到这样一个问题:如图1,在Rt△ABC中,∠ACB=90°,∠A=60°,CD平分∠ACB,试判断BC和AC、AD之间的数量关系.小明发现,利用轴对称做一个变化,在BC上截取CA′=CA,连接DA′,得到一对全等的三角形,从而将问题解决(如图2).
(1)求证:△ADC≌△A′DC;
(2)试猜想写出BC和AC、AD之间的数量关系,并给出证明.
如图所示:△ABC中,DE∥BC,AD=5,BD=10,AE=3.则AC的值为( )
A.9 B.6 C.3 D.4
如图,小明从A点出发前进10m,向右转15°,再前进10 m,又向右转15°,…,这样一直走下去,他第一次[回到出发点A时,一共走了 m。
如图所示,AD平分∠BAC,AB=AC,连结BD、CD并延长分别交AC、AB于F、E点,则此图中全等三角形的对数为:
A、2对 B、3对 C、4对 D、5对
某商场将每件进价为160元的某种商品原来按每件200元出售,一天可售出100件,后来经过市场调查,发现这种商品单价每降低2元,其销量可增加10件.
(1)求商场经营该商品原来一天可获利润多少元?
(2)设后来该商品每件降价x元,商场一天可获利润y元.
①若商场经营该商品一天要获利润4320元,则每件商品应降价多少元?
②求出y与x之间的函数关系式,当x取何值时,商场获利润最大?并求最大利润值.
如图,在平面直角坐标系中,二次函数y=ax2+c(a≠0)的图象过面积为的正方形ABOC的三个顶点A、B、C,则a的值为 .
如图,在△ABC中,AB=AC,以AB为直径的⊙O分别与BC,AC交于点D,E,过点D作⊙O的切线DF,交AC于点F.
(1)求证:DF⊥AC;
(2)若⊙O的半径为8,∠CDF=22.5°,求阴影部分的面积.
已知一元二次方程x2-6x-5=0的两根为m,n,则m2-mn+n2= .