题目内容
如图,在△ABC中,∠C=45°,BC=10,高AD=8,矩形EFPQ的一边QP在BC边上,E、F两点分别在AB、AC上,AD交EF于点H.
(1)求证:
;
(2)设EF=x,当x为何值时,矩形EFPQ的面积最大?并求其最大值;
(3)当矩形EFPQ的面积最大时,该矩形EFPQ以每秒1个单位的速度沿射线QC匀速运动(当点Q与点C重合时停止运动),设运动时间为t秒,矩形EFFQ与△ABC重叠部分的面积为S,求S与t的函数关系式.
![]()
练习册系列答案
相关题目
2016年某中学举行的春季田径径运动会上,参加男子跳高的15名运动员的成绩如表所示:
这些运动员跳高成绩的中位数和众数分别是( )
成绩( | 1.80 | 1.50 | 1.60 | 1.65 | 1.70 | 1.75 |
人数 | 1 | 2 | 4 | 3 | 3 | 2 |
A. 1.70
,1.65
B. 1.70
,1.70
C. 1.65
,1.60
D. 3
,4![]()