题目内容

如图,点A在双曲线上,点B在双曲线上,且AB∥x轴,C、D在x轴上,若四边形ABCD为平行四边形,则它的面积为   
【答案】分析:由AB∥x轴可知,A、B两点纵坐标相等,设A(,m),B(,m),求出AB的长,再根据平行四边形的面积公式进行计算即可;
解答:解:∵点A在双曲线上,点B在双曲线上,且AB∥x轴,
∴设A(,m),则B(,m),
∴AB==
∴S?ABCD=•m=2,
故答案为:2.
点评:本题考查了反比例函数,关键是由平行于x轴的直线上的点的纵坐标相等,设出点的坐标,再根据平行四边形的面积公式计算.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网