ÌâÄ¿ÄÚÈÝ
£¨2011•×Ô¹±£©ÒÑÖªÅ×ÎïÏßy=ax2+2x+3£¨a¡Ù0£©ÓÐÈçÏÂÁ½¸öÌØµã£º¢ÙÎÞÂÛʵÊýaÔõÑù±ä»¯£¬Æä¶¥µã¶¼ÔÚijһÌõÖ±ÏßlÉÏ£»¢ÚÈô°Ñ¶¥µãµÄºá×ø±ê¼õÉÙ
£¬×Ý×ø±êÔö´ó
·Ö±ð×÷ΪµãAµÄºá¡¢×Ý×ø±ê£»°Ñ¶¥µãµÄºá×ø±êÔö¼Ó
£¬×Ý×ø±êÔö¼Ó
·Ö±ð×÷ΪµãBµÄºá¡¢×Ý×ø±ê£¬ÔòA£¬BÁ½µãÒ²ÔÚÅ×ÎïÏßy=ax2+2x+3£¨a¡Ù0£©ÉÏ£®
£¨1£©Çó³öµ±ÊµÊýa±ä»¯Ê±£¬Å×ÎïÏßy=ax2+2x+3£¨a¡Ù0£©µÄ¶¥µãËùÔÚÖ±ÏßlµÄ½âÎöʽ£»
£¨2£©ÇëÕÒ³öÔÚÖ±ÏßlÉϵ«²»ÊǸÃÅ×ÎïÏß¶¥µãµÄËùÓе㣬²¢ËµÃ÷ÀíÓÉ£»
£¨3£©ÄãÄܸù¾ÝÌØµã¢ÚµÄÆôʾ£¬¶ÔÒ»°ã¶þ´Îº¯Êýy=ax2+bx+c£¨a¡Ù0£©Ìá³öÒ»¸ö²ÂÏëÂð£¿ÇëÓÃÊýѧÓïÑÔ°ÑÄãµÄ²ÂÏë±í´ï³öÀ´£¬²¢¸øÓèÖ¤Ã÷£®
| 1 |
| a |
| 1 |
| a |
| 1 |
| a |
| 1 |
| a |
£¨1£©Çó³öµ±ÊµÊýa±ä»¯Ê±£¬Å×ÎïÏßy=ax2+2x+3£¨a¡Ù0£©µÄ¶¥µãËùÔÚÖ±ÏßlµÄ½âÎöʽ£»
£¨2£©ÇëÕÒ³öÔÚÖ±ÏßlÉϵ«²»ÊǸÃÅ×ÎïÏß¶¥µãµÄËùÓе㣬²¢ËµÃ÷ÀíÓÉ£»
£¨3£©ÄãÄܸù¾ÝÌØµã¢ÚµÄÆôʾ£¬¶ÔÒ»°ã¶þ´Îº¯Êýy=ax2+bx+c£¨a¡Ù0£©Ìá³öÒ»¸ö²ÂÏëÂð£¿ÇëÓÃÊýѧÓïÑÔ°ÑÄãµÄ²ÂÏë±í´ï³öÀ´£¬²¢¸øÓèÖ¤Ã÷£®
·ÖÎö£º£¨1£©È¡a=1ºÍ-1£¬Çó³öÁ½µãµÄ×ø±ê£¬Óôý¶¨ÏµÊý·¨Çó³öÖ±ÏßlµÄ½âÎöʽ¼´¿É£»
£¨2£©Çó³öÅ×ÎïÏßy=ax2+2x+3µÄ¶¥µãP×ø±êΪ(-
£¬3-
)£¬¸ù¾ÝÆäȡֵ£¬¼´¿ÉµÃ³ö²»ÊǸÃÅ×ÎïÏߵĶ¥µãµÄ×ø±ê£»
£¨3£©²ÂÏ룺¶ÔÓÚÅ×ÎïÏßy=ax2+bx+c£¨a¡Ù0£©£¬½«Æä¶¥µãµÄºá×ø±ê¼õÉÙ
£¬×Ý×ø±êÔö¼Ó
·Ö±ð×÷ΪµãAµÄºá¡¢×Ý×ø±ê£»°Ñ¶¥µãµÄºá×ø±êÔö¼Ó
£¬×Ý×ø±êÔö¼Ó
·Ö±ð×÷ΪµãBµÄºá¡¢×Ý×ø±ê£¬ÔòA£¬BÁ½µãÒ²ÔÚÅ×ÎïÏßy=ax2+bx+c£¨a¡Ù0£©ÉÏ£»Çó³öÆäºá¡¢×Ý×ø±ê£¬°Ñºá×ø±ê´úÈ뺯Êýʽ£¬ÑéÖ¤¼´¿É£»
£¨2£©Çó³öÅ×ÎïÏßy=ax2+2x+3µÄ¶¥µãP×ø±êΪ(-
| 1 |
| a |
| 1 |
| a |
£¨3£©²ÂÏ룺¶ÔÓÚÅ×ÎïÏßy=ax2+bx+c£¨a¡Ù0£©£¬½«Æä¶¥µãµÄºá×ø±ê¼õÉÙ
| 1 |
| a |
| 1 |
| a |
| 1 |
| a |
| 1 |
| a |
½â´ð£º½â£º£¨1£©È¡a=1£¬µÃÅ×ÎïÏßy=x2+2x+3£¬
Æä¶¥µãΪP1£¨-1£¬2£©£®
È¡a=-1£¬µÃÅ×ÎïÏßy=-x2+2x+3£¬
Æä¶¥µãΪP2£¨1£¬4£©£®
ÓÉÌâÒâÓÐP1¡¢P2ÔÚÖ±ÏßlÉÏ£¬ÉèÖ±ÏßlµÄ½âÎöʽΪy=kx+b£¬Ôò
½âµÃ£º
¡àÖ±ÏßlµÄ½âÎöʽΪy=x+3£®
£¨2£©¡ßÅ×ÎïÏßy=ax2+2x+3µÄ¶¥µãP×ø±êΪ(-
£¬3-
)£®
ÏÔÈ»P(-
£¬3-
)ÔÚÖ±Ïßy=x+3ÉÏ£®
ÓÖ-
ÄÜÈ¡µ½³ý0ÒÔÍâµÄËùÓÐʵÊý£¬
¡àÔÚy=x+3ÉϽöÓÐÒ»µã£¨0£¬3£©²»ÊǸÃÅ×ÎïÏߵĶ¥µã£®
£¨3£©²ÂÏ룺¶ÔÓÚÅ×ÎïÏßy=ax2+bx+c£¨a¡Ù0£©£¬½«Æä¶¥µãµÄºá×ø±ê¼õÉÙ
£¬×Ý×ø±êÔö¼Ó
·Ö±ð×÷ΪµãAµÄºá¡¢×Ý×ø±ê£»°Ñ¶¥µãµÄºá×ø±êÔö¼Ó
£¬×Ý×ø±êÔö¼Ó
·Ö±ð×÷ΪµãBµÄºá¡¢×Ý×ø±ê£¬ÔòA£¬BÁ½µãÒ²ÔÚÅ×ÎïÏßy=ax2+bx+c£¨a¡Ù0£©ÉÏ£®Ö¤Ã÷ÈçÏ£º
¡ßÅ×ÎïÏßy=ax2+bx+c£¨a¡Ù0£©µÄ¶¥µã×ø±êΪ£¨-
£¬
£©£¬
¡àµãAµÄ×ø±êΪ(-
£¬
)£¬
µãBµÄ×ø±êΪ(
£¬
)£®
¡ßx=-
ʱ£¬y=ax2+bx+c=a(
)2+b(
)+c=
¡àµãA(-
£¬
)ÔÚÅ×ÎïÏßy=ax2+bx+c£¨a¡Ù0£©£¬
ͬÀíÓÐB(
£¬
)Ò²ÔÚÅ×ÎïÏßÉÏ£¬¹Ê½áÂÛ³ÉÁ¢£®
Æä¶¥µãΪP1£¨-1£¬2£©£®
È¡a=-1£¬µÃÅ×ÎïÏßy=-x2+2x+3£¬
Æä¶¥µãΪP2£¨1£¬4£©£®
ÓÉÌâÒâÓÐP1¡¢P2ÔÚÖ±ÏßlÉÏ£¬ÉèÖ±ÏßlµÄ½âÎöʽΪy=kx+b£¬Ôò
|
½âµÃ£º
|
¡àÖ±ÏßlµÄ½âÎöʽΪy=x+3£®
£¨2£©¡ßÅ×ÎïÏßy=ax2+2x+3µÄ¶¥µãP×ø±êΪ(-
| 1 |
| a |
| 1 |
| a |
ÏÔÈ»P(-
| 1 |
| a |
| 1 |
| a |
ÓÖ-
| 1 |
| a |
¡àÔÚy=x+3ÉϽöÓÐÒ»µã£¨0£¬3£©²»ÊǸÃÅ×ÎïÏߵĶ¥µã£®
£¨3£©²ÂÏ룺¶ÔÓÚÅ×ÎïÏßy=ax2+bx+c£¨a¡Ù0£©£¬½«Æä¶¥µãµÄºá×ø±ê¼õÉÙ
| 1 |
| a |
| 1 |
| a |
| 1 |
| a |
| 1 |
| a |
¡ßÅ×ÎïÏßy=ax2+bx+c£¨a¡Ù0£©µÄ¶¥µã×ø±êΪ£¨-
| b |
| 2a |
| 4ac-b2 |
| 4a |
¡àµãAµÄ×ø±êΪ(-
| b+2 |
| 2a |
| 4ac-b2+4 |
| 4a |
µãBµÄ×ø±êΪ(
| -b+2 |
| 2a |
| 4ac-b2+4 |
| 4a |
¡ßx=-
| b+2 |
| 2a |
| -b+2 |
| 2a |
| -b+2 |
| 2a |
| 4ac-b2+4 |
| 4a |
¡àµãA(-
| b+2 |
| 2a |
| 4ac-b2+4 |
| 4a |
ͬÀíÓÐB(
| -b+2 |
| 2a |
| 4ac-b2+4 |
| 4a |
µãÆÀ£º±¾ÌâÖ÷Òª¿¼²éÁ˶þ´Îº¯ÊýµÄ½âÎöʽ¼°Óôý¶¨ÏµÊý·¨Çóº¯ÊýµÄ½âÎöʽ£¬Êì¼Ç¶þ´Îº¯ÊýµÄ¶¥µã×ø±ê¹«Ê½¼°ÆäÐÔÖÊ£¬ÊÇÕýÈ·½â´ðµÄ¹Ø¼ü£®
Á·Ï°²áϵÁдð°¸
Ïà¹ØÌâÄ¿
£¨2011•×Ô¹±£©ÒÑÖªA£¬BÁ½¸ö¿Ú´üÖж¼ÓÐ6¸ö·Ö±ð±êÓÐÊý×Ö0£¬1£¬2£¬3£¬4£¬5µÄ²ÊÇò£¬ËùÓвÊÇò³ý±êʾµÄÊý×ÖÍâûÓÐÇø±ð£®¼×¡¢ÒÒÁ½Î»Í¬Ñ§·Ö±ð´ÓA£¬BÁ½¸ö¿Ú´üÖÐËæÒâÃþ³öÒ»¸öÇò£®¼Ç¼×Ãþ³öµÄÇòÉÏÊý×ÖΪx£¬ÒÒÃþ³öµÄÇòÉÏÊý×ÖΪy£¬Êý¶Ô£¨x£¬y£©¶ÔÓ¦Æ½ÃæÖ±½Ç×ø±êϵÄڵĵãQ£¬ÔòµãQÂäÔÚÒÔÔµãΪԲÐÄ£¬°ë¾¶Îª
|