题目内容

如图,在△ABC中,∠C=90°,BC=5米,AC=12米.M点在线段CA上,从C向A运动,速度为1米/秒;同时N点在线段AB上,从A向B运动,速度为2米/秒.△AMN的最大面积是________.


分析:首先过点N作NH⊥AC于点H,由在△ABC中,∠C=90°,BC=5米,AC=12米,利用勾股定理即可求得AB的长,设运动时间为t秒,可表示出AM的长,然后由相似三角形的对应边成比例,可表示出NH的长,然后由二次函数的最值,求得答案.
解答:解:过点N作NH⊥AC于点H,
∵在△ABC中,∠C=90°,BC=5米,AC=12米,
∴AB==13(米),
设运动时间为t秒,
∴CM=t(米),AM=AC-CM=12-t(米),AN=2t(米),
∵∠A=∠A,∠NHA=∠C=90°,
∴△ANH∽△ABC,


∴NH=t,
∴S△AMN=AM•NH=(12-t)×t=-(t-6)2+
∴△AMN的最大面积是
故答案为:
点评:此题考查了相似三角形的判定与性质、勾股定理以及二次函数的最值问题.此题难度适中,属于动点问题,注意掌握数形结合思想与方程思想的应用.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网