题目内容
同时掷两枚标有数字1~6的正方形骰子,数字和为1的概率是 。
如图,在菱形ABCD中,对角线AC与BD交于点O,OE⊥AB,垂足为E,若∠ADC=130°,则∠AOE的大小为( )
A.75° B.65° C.55° D.50°
如图所示,把一个长方形纸片沿EF折叠后,点D,C分别落在D′,C′的位置.若∠EFB=70°,则∠AED′等于 °
在⊙O中,AB为⊙O的直径,AC是弦,,.
(1)在图1中,P为直径BA延长线上的一点,当CP与⊙O相切时,求PO的长;
(2)如图2,一动点M从A点出发,在⊙O上按逆时针方向运动一周,当时,求半径OM所扫过的扇形的面积.
解方程 :2x2-x-1=0。
如图,正方形的四个顶点分别在⊙上,点在弧CD上不同于点的任意一点,则的度数是( )
A.45° B.60° C.75° D.90°
下列电视台的台标是中心对称图形是( )
如图,在平行四边形ABCD中,AB=4,∠BAD的平分线与BC的延长线交于点E,与DC交于点F,且点F为边DC的中点,DG⊥AE,垂足为G,若DG=1,则AE的边长为( )
A、 B、8 C、 D、
如图1,正方形ABCD的边长为4厘米,E为AD边的中点,F为AB边上一点,动点P从点B出发,沿B→C→D→E,向终点E以每秒a厘米的速度运动,设运动时间为t秒,△PBF的面积记为S. S与t的部分函数图象如图2所示,已知点M(1,)、N(5,6)在S与t的函数图象上.
(1)求线段BF的长及a的值;
(2)写出S与t的函数关系式,并补全该函数图象;
(3)当t为多少时,△PBF的面积S为4.