ÌâÄ¿ÄÚÈÝ
£¨1£©ÇóÅ×ÎïÏߵĽâÎöʽ£»
£¨2£©ÈôƽÐÐÓÚxÖáµÄ¶¯Ö±ÏßDE´ÓµãC¿ªÊ¼£¬ÒÔÿÃë1¸öµ¥Î»µÄËÙ¶ÈÑØyÖáÕý·½ÏòÆ½ÒÆ£¬ÇÒ·Ö±ð½»yÖá¡¢Ïß¶ÎBCÓÚµãE¡¢µãD£¬Í¬Ê±¶¯µãP´ÓµãB³ö·¢£¬ÔÚÏß¶ÎOBÉÏÒÔÿÃë2¸öµ¥Î»µÄËÙ¶ÈÏòÔµãOÔ˶¯£®µ±µãPÔ˶¯µ½µãOʱ£¬Ö±ÏßDEÓëµãP¶¼Í£Ö¹Ô˶¯£®Á¬½ÓDP£¬ÉèµãPµÄÔ˶¯Ê±¼äΪtÃ룮
¢Ùµ±tΪºÎֵʱ£¬
| 1 |
| ED |
| 1 |
| OP |
¢ÚÊÇ·ñ´æÔÚtµÄÖµ£¬Ê¹ÒÔP£¬B£¬DΪ¶¥µãµÄÈý½ÇÐÎÓë¡÷ABCÏàËÆ£®Èô´æÔÚ£¬Çó³ötµÄÖµ£»Èô²»´æÔÚ£¬Çë˵Ã÷ÀíÓÉ£®
·ÖÎö£º£¨1£©Çó³öCµÄ×ø±ê£¬µÃµ½A¡¢BµÄ×ø±ê£¬ÉèÅ×ÎïÏߵĽâÎöʽΪy=a£¨x-2£©£¨x-4£©£¬´úÈëµãCµÄ×ø±êÇó³öa¼´¿É£»
£¨2£©¢ÙÓÉÌâÒ⣺CE=t£¬PB=2t£¬OP=4-2t£¬ÓÉED¡ÎBAµÃ³ö
=
£¬Çó³öED=2CE=2t£¬¸ù¾Ý
+
=
+
=
=
£¬Çó³ö¼´¿É£»¢ÚÒÔP¡¢B¡¢DΪ¶¥µãµÄÈý½ÇÐÎÓë¡÷ABCÏàËÆÓÐÁ½ÖÖÇé¿ö£º
=
ºÍ
=
´úÈëÇó³ö¼´¿É£®
£¨2£©¢ÙÓÉÌâÒ⣺CE=t£¬PB=2t£¬OP=4-2t£¬ÓÉED¡ÎBAµÃ³ö
| ED |
| OB |
| CE |
| CO |
| 1 |
| ED |
| 1 |
| OP |
| 1 |
| 2t |
| 1 |
| 4-2t |
| 4 |
| 2t(4-2t) |
| 1 |
| -t2+2t |
| BP |
| AB |
| BD |
| BC |
| BP |
| BD |
| BC |
| BA |
½â´ð£º½â£º£¨1£©Èçͼ£¬ÓÉÅ×ÎïÏßy=ax2+bx-2µÃ£ºC£¨0£¬-2£©£¬
¡àOA=OC=2£¬
¡àA£¨2£¬0£©£¬
¡ß¡÷ABCµÄÃæ»ýΪ2£¬
¡àAB=2£¬
¡àB£¨4£¬0£©£¬
¡àÉèÅ×ÎïÏߵĽâÎöʽΪy=a£¨x-2£©£¨x-4£©£¬´úÈëµãC£¨0£¬-2£©£¬
a=-
£¬

¡àÅ×ÎïÏߵĽâÎöʽΪy=-
(x-2)(x-4)=-
x2+
x-2£¬
´ð£ºÅ×ÎïÏߵĽâÎöʽΪy=-
x2+
x-2£®
£¨2£©½â£ºÓÉÌâÒ⣺CE=t£¬PB=2t£¬OP=4-2t£¬
¡ßED¡ÎBA
¿ÉµÃ£º
=
£¬
¼´
=
£¬
¡àED=2CE=2t£¬
¢Ù
+
=
+
=
=
£¬
¡ßµ±t=1ʱ£¬-t2+2tÓÐ×î´óÖµ1£¬
¡àµ±t=1ʱ
+
µÄÖµ×îС£¬×îСֵΪ1£®
´ð£ºµ±tΪ1ʱ£¬
+
µÄÖµ×îС£¬×îСֵÊÇ1£®
¢Ú½â£ºÓÉÌâÒâ¿ÉÇó£ºCD=
t£¬CB=2
£¬
¡àBD=2
-
t£¬
¡ß¡ÏPBD=¡ÏABC£¬
¡àÒÔP¡¢B¡¢DΪ¶¥µãµÄÈý½ÇÐÎÓë¡÷ABCÏàËÆÓÐÁ½ÖÖÇé¿ö£º
µ±
=
ʱ£¬¼´
=
£¬
½âµÃ£ºt=
£¬
µ±
=
ʱ£¬¼´
=
£¬
½âµÃ£ºt=
£¬
µ±t=
»òt=
ʱ£¬ÒÔP¡¢B¡¢DΪ¶¥µãµÄÈý½ÇÐÎÓë¡÷ABCÏàËÆ£®
´ð£º´æÔÚtµÄÖµ£¬Ê¹ÒÔP£¬B£¬DΪ¶¥µãµÄÈý½ÇÐÎÓë¡÷ABCÏàËÆ£¬tµÄÖµÊÇ
»ò
£®
¡àOA=OC=2£¬
¡àA£¨2£¬0£©£¬
¡ß¡÷ABCµÄÃæ»ýΪ2£¬
¡àAB=2£¬
¡àB£¨4£¬0£©£¬
¡àÉèÅ×ÎïÏߵĽâÎöʽΪy=a£¨x-2£©£¨x-4£©£¬´úÈëµãC£¨0£¬-2£©£¬
a=-
| 1 |
| 4 |
¡àÅ×ÎïÏߵĽâÎöʽΪy=-
| 1 |
| 4 |
| 1 |
| 4 |
| 3 |
| 2 |
´ð£ºÅ×ÎïÏߵĽâÎöʽΪy=-
| 1 |
| 4 |
| 3 |
| 2 |
£¨2£©½â£ºÓÉÌâÒ⣺CE=t£¬PB=2t£¬OP=4-2t£¬
¡ßED¡ÎBA
¿ÉµÃ£º
| ED |
| OB |
| CE |
| CO |
¼´
| ED |
| 4 |
| CE |
| 2 |
¡àED=2CE=2t£¬
¢Ù
| 1 |
| ED |
| 1 |
| OP |
| 1 |
| 2t |
| 1 |
| 4-2t |
| 4 |
| 2t(4-2t) |
| 1 |
| -t2+2t |
¡ßµ±t=1ʱ£¬-t2+2tÓÐ×î´óÖµ1£¬
¡àµ±t=1ʱ
| 1 |
| ED |
| 1 |
| OP |
´ð£ºµ±tΪ1ʱ£¬
| 1 |
| ED |
| 1 |
| OP |
¢Ú½â£ºÓÉÌâÒâ¿ÉÇó£ºCD=
| 5 |
| 5 |
¡àBD=2
| 5 |
| 5 |
¡ß¡ÏPBD=¡ÏABC£¬
¡àÒÔP¡¢B¡¢DΪ¶¥µãµÄÈý½ÇÐÎÓë¡÷ABCÏàËÆÓÐÁ½ÖÖÇé¿ö£º
µ±
| BP |
| AB |
| BD |
| BC |
| 2t |
| 2 |
2
| ||||
2
|
½âµÃ£ºt=
| 2 |
| 3 |
µ±
| BP |
| BD |
| BC |
| BA |
| 2t | ||||
2
|
2
| ||
| 2 |
½âµÃ£ºt=
| 10 |
| 7 |
µ±t=
| 2 |
| 3 |
| 10 |
| 7 |
´ð£º´æÔÚtµÄÖµ£¬Ê¹ÒÔP£¬B£¬DΪ¶¥µãµÄÈý½ÇÐÎÓë¡÷ABCÏàËÆ£¬tµÄÖµÊÇ
| 2 |
| 3 |
| 10 |
| 7 |
µãÆÀ£º±¾ÌâÖ÷Òª¿¼²é¶Ô¶þ´Îº¯ÊýµÄ×îÖµ£¬Óôý¶¨ÏµÊý·¨Çó¶þ´Îº¯ÊýµÄ½âÎöʽ£¬½âÒ»ÔªÒ»´Î·½³Ì£¬ÏàËÆÈý½ÇÐεÄÐÔÖʺÍÅж¨£¬×ÛºÏÔËÓÃÕâЩÐÔÖʽøÐмÆËãÊǽâ´ËÌâµÄ¹Ø¼ü£®
Á·Ï°²áϵÁдð°¸
Ïà¹ØÌâÄ¿