题目内容
【题目】在Rt△ABC中,∠ACB=90°,∠B=60°.若点D为AB的中点,P为边AB上一点,且∠CDP=90°,将∠CDP绕点D顺时针方向旋转
(0°<
<60°),角的两边分别与边AC、BC相交于M、N两点,则
=_______
![]()
【答案】![]()
【解析】
先根据直角三角形斜边上的中线性质得CD=AD=DB,则∠ACD=∠A=30°,∠BCD=∠B=60°,由于∠EDF=90°,可利用互余得∠CPD=60°,再根据旋转的性质得∠PDM=∠CDN=α,于是可判断△PDM∽△CDN,得到
,然后在Rt△PCD中利用正切的定义得到tan∠PCD=tan30°=
,从而得到解.
∵点D为斜边AB的中点,
∴CD=AD=DB,
∴∠ACD=∠A=30°,∠BCD=∠B=60°,
∵∠EDF=90°,
∴∠CPD=60°,
∴∠MPD=∠NCD,
∵△EDF绕点D顺时针方向旋转α(0°<α<60°),
∴∠PDM=∠CDN=α,
∴△PDM∽△CDN,
∴
,
在Rt△PCD中,∵tan∠PCD=tan30°=
,
∴
.
故答案是:
.
练习册系列答案
相关题目
【题目】学校冬季趣味运动会开设了“抢收抢种”项目,八(5)班甲、乙两个小组都想代表班级参赛,为了选择一个比较好的队伍,八(5)班的班委组织了一次选拔赛,甲、乙两组各10人的比赛成绩如下表:
甲组 | 7 | 8 | 9 | 7 | 10 | 10 | 9 | 10 | 10 | 10 |
乙组 | 10 | 8 | 7 | 9 | 8 | 10 | 10 | 9 | 10 | 9 |
(1)甲组成绩的中位数是 分,乙组成绩的众数是 分.
(2)计算乙组的平均成绩和方差.
(3)已知甲组成绩的方差是1.4,则选择 组代表八(5)班参加学校比赛.