题目内容
当n=1,2,3,…,2003时,求所有二次函数y=(n2+n)x2-(2n+1)x+1的图象与x轴上所截得的线段长度之和.
因为△=(2n+1)2-4(n2+n)=4n2+1+4n-4n2-4n=1>0,
所以无论n为何值,二次函数与x轴均有两个交点.
二次函数y=(n2+n)x2-(2n+1)x+1的图象与x轴上所截得的线段长为|x1-x2|=
,
当n=1,n=2,n=3,…,2003时,
二次函数y=(n2+n)x2-(2n+1)x+1的图象与x轴上所截得的线段长分别为:
,
,
,
,
,
,…,
,
于是所有线段的长度之和为:
+
+
+
+
+
+…+
=1-
+
-
+
-
+
-
+
…+
-
=1-
=
.
故答案为:
.
所以无论n为何值,二次函数与x轴均有两个交点.
二次函数y=(n2+n)x2-(2n+1)x+1的图象与x轴上所截得的线段长为|x1-x2|=
| 1 |
| |n2+n| |
当n=1,n=2,n=3,…,2003时,
二次函数y=(n2+n)x2-(2n+1)x+1的图象与x轴上所截得的线段长分别为:
| 1 |
| 2 |
| 1 |
| 6 |
| 1 |
| 12 |
| 1 |
| 20 |
| 1 |
| 30 |
| 1 |
| 42 |
| 1 |
| 2003×2004 |
于是所有线段的长度之和为:
| 1 |
| 2 |
| 1 |
| 6 |
| 1 |
| 12 |
| 1 |
| 20 |
| 1 |
| 30 |
| 1 |
| 42 |
| 1 |
| 2003×2004 |
=1-
| 1 |
| 2 |
| 1 |
| 2 |
| 1 |
| 3 |
| 1 |
| 3 |
| 1 |
| 4 |
| 1 |
| 4 |
| 1 |
| 5 |
| 1 |
| 5 |
| 1 |
| 2003 |
| 1 |
| 2004 |
=1-
| 1 |
| 2004 |
=
| 2003 |
| 2004 |
故答案为:
| 2003 |
| 2004 |
练习册系列答案
相关题目