题目内容

如图①,是等边三角形,是顶角的等腰三角形,以为顶点作一个角,角两边分别交边于两点,连接.
(1)探究:线段之间的关系,并加以证明。
(2)若点的延长线上的一点,的延长线上的点,其它条件不变,请你再探线段之间的关系,在图②中画出图形,直接写出结论.

(1)MN=BM+NC.理由如下:
延长AC至E,使得CE=BM(或延长AB至E,使得BE=CN),并连接DE.

∵△BDC为等腰三角形,△ABC为等边三角形,
∴BD=CD,∠DBC=∠DCB,∠MBC=∠ACB=60°,
又BD=DC,且∠BDC=120°,
∴∠DBC=∠DCB=30°
∴∠ABC+∠DBC=∠ACB+∠DCB=60°+30°=90°,
∴∠MBD=∠ECD=90°,
在△MBD与△ECD中,BD=CD,∠MBD=∠ECD,CE=BM,
∴△MBD≌△ECD(SAS),
∴MD=DE,
∴△DMN≌△DEN,
∴MN=BM+NC.
(2)按要求作出图形,(1)中结论不成立,应为MN=NC﹣BM.
在CA上截取CE=BM.

∵△ABC是正三角形,
∴∠ACB=∠ABC=60°,
又∵BD=CD,∠BDC=120°,
∴∠BCD=∠CBD=30°,
∴∠MBD=∠ECD=90°,
又∵CE=BM,BD=CD,
∴△BMD≌△CED(SAS),
∴DE=DM,
又∵ND=ND,∠EDN=∠MDN=60°,MD=ED,
∴△MDN≌△EDN(SAS),
∴MN=NE=NC﹣CE=NC﹣BM.

解析

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网