题目内容

如图,在△ABC中,BC=4,以点A为圆心、2为半径的⊙A与BC相切于点D,交AB于E,交AC于F,点P是⊙A上的一点,且∠EPF=40°,则图中阴影部分的面积是    (结果保留π).
【答案】分析:由于BC切⊙A于D,那么连接AD,可得出AD⊥BC,即△ABC的高AD=2;已知了底边BC的长,可求出△ABC的面积.
根据圆周角定理,易求得∠EAF=2∠P=80°,已知了圆的半径,可求出扇形AEF的面积.
图中阴影部分的面积=△ABC的面积-扇形AEF的面积.由此可求阴影部分的面积.
解答:解:连接AD,则AD⊥BC;
△ABC中,BC=4,AD=2;
∴S△ABC=BC•AD=4.
∵∠EAF=2∠EPF=80°,AE=AF=2;
∴S扇形EAF==
∴S阴影=S△ABC-S扇形EAF=4-
点评:解决本题的关键是利用圆周角与圆心角的关系求出扇形的圆心角的度数.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网