题目内容
已知:如图,AD是△ABC的角平分线,AE是△ABC的外角平分线,若∠DAC=20°,问∠EAC=
- A.60°
- B.70°
- C.80°
- D.90°
B
分析:根据三角形的外角性质得到∠EAC=∠B+∠ACD,求出∠EAC的度数,根据角平分线的定义求出即可.
解答:∵AD是△ABC的角平分线,∠DAC=20°,
∴∠BAC=2∠DAC=40°,
∴∠B+∠ACD=140°,
∴∠EAC=
∠FAC=
(∠B+∠ACD)=70°.
故选B.
点评:本题主要考查对三角形的外角性质,角平分线的性质等知识点的理解和掌握,能求出∠EAC的度数是解此题的关键.
分析:根据三角形的外角性质得到∠EAC=∠B+∠ACD,求出∠EAC的度数,根据角平分线的定义求出即可.
解答:∵AD是△ABC的角平分线,∠DAC=20°,
∴∠BAC=2∠DAC=40°,
∴∠B+∠ACD=140°,
∴∠EAC=
故选B.
点评:本题主要考查对三角形的外角性质,角平分线的性质等知识点的理解和掌握,能求出∠EAC的度数是解此题的关键.
练习册系列答案
相关题目
| A、3:2 | B、9:4 | C、2:3 | D、4:9 |