搜索
题目内容
如图,AD是等腰三角形ABC的底边BC上的中线,DE∥AB,交AC于点E,
判断△ADE是不是等腰三角形,并说明理由。
试题答案
相关练习册答案
解析:略
练习册系列答案
快乐暑假快乐学中原农民出版社系列答案
全程解读系列答案
天下无题系列丛书绿色假期暑假作业系列答案
小学生暑假衔接陕西师范大学出版总社系列答案
考易通暑假衔接教材新疆美术摄影出版社系列答案
超能学典暑假接力棒南京大学出版社系列答案
文涛书业假期作业快乐暑假系列答案
七彩假期期末大提升系列答案
一诺书业暑假作业快乐假期云南美术出版社系列答案
假日氧吧快乐假日精彩生活系列答案
相关题目
操作实验:
如图,把等腰三角形沿顶角平分线对折并展开,发现被折痕分成的两个三角形成轴对称.
所以△ABD≌△ACD,所以∠B=∠C.
归纳结论:如果一个三角形有两条边相等,那么这两条边所对的角也相等.
根据上述内容,回答下列问题:
思考验证:如图(4),在△ABC中,AB=AC.试说明∠B=∠C的理由;
探究应用:如图(5),CB⊥AB,垂足为B,DA⊥AB,垂足为A.E为AB的中点,AB=BC,CE⊥BD.
(1)BE与AD是否相等,为什么?
(2)小明认为AC是线段DE的垂直平分线,你认为对吗?说说你的理由;
(3)∠DBC与∠DCB相等吗试?说明理由.
操作实验:
如图,把等腰三角形沿顶角平分线对折并展开,发现被折痕分成的两个三角形成轴对称.所以△ABD≌△ACD,所以∠B=∠C.
归纳结论:如果一个三角形有两条边相等,那么这两条边所对的角也相等.根据上述内容,回答下列问题:
思考验证:如图(4),在△ABC中,AB=AC.试说明∠B=∠C的理由.
探究应用:
如图(5),CB⊥AB,垂足为B,DA⊥AB,垂足为A.E为AB的中点,AB=BC,CE⊥BD.
(1)BE与AD是否相等?为什么?
(2)小明认为AC是线段DE的垂直平分线,你认为对吗?说说你的理由。
(3)∠DBC与∠DCB相等吗?试说明理由.
操作实验:
如图,把等腰三角形沿顶角平分线对折并展开,发现被折痕分成的两个三角形成轴对称.
所以△ABD≌△ACD,所以∠B=∠C.
归纳结论:如果一个三角形有两条边相等,那么这两条边所对的角也相等.
根据上述内容,回答下列问题:
思考验证:如图(4),在△ABC中,AB=AC.试说明∠B=∠C的理由;
探究应用:如图(5),CB⊥AB,垂足为A,DA⊥AB,垂足为B.E为AB的中点,AB=BC,CE⊥BD.
(1)BE与AD是否相等,为什么?
(2)小明认为AC是线段DE的垂直平分线,你认为对吗?说说你的理由;
(3)∠DBC与∠DCB相等吗试?说明理由.
操作实验:
如图,把等腰三角形沿顶角平分线对折并展开,发现被折痕分成的两个三角形成轴对称.
所以△ABD≌△ACD,所以∠B=∠C.
归纳结论:如果一个三角形有两条边相等,那么这两条边所对的角也相等.
根据上述内容,回答下列问题:
思考验证:如图(4),在△ABC中,AB=AC.试说明∠B=∠C的理由;
探究应用:如图(5),CB⊥AB,垂足为A,DA⊥AB,垂足为B.E为AB的中点,AB=BC,CE⊥BD.
(1)BE与AD是否相等,为什么?
(2)小明认为AC是线段DE的垂直平分线,你认为对吗?说说你的理由;
(3)∠DBC与∠DCB相等吗试?说明理由.
操作实验:
如图,把等腰三角形沿顶角平分线对折并展开,发现被折痕分成的两个三角形成轴对称,所以△ABD≌△ACD,所以∠B=∠C.
归纳结论:
如果一个三角形有两条边相等,那么这两条边所对的角也相等.根据上述内容,回答下列问题:
思考验证:
(1)如图(4),在△ABC中,AB=AC,试说明∠B=∠C的理由;
探究应用:
(2)如图(5),CB⊥AB,垂足为A,DA⊥AB,垂足为B.E为AB的中点,AB=BC,CE⊥BD.
(i)BE与AD是否相等,为什么?
(ii)小明认为AC是线段DE的垂直平分线,你认为对吗?说说你的理由;
(iii)∠DBC与∠DCB相等吗试?说明理由.
关 闭
试题分类
高中
数学
英语
物理
化学
生物
地理
初中
数学
英语
物理
化学
生物
地理
小学
数学
英语
其他
阅读理解答案
已回答习题
未回答习题
题目汇总
试卷汇总
练习册解析答案