题目内容
如图,AB是⊙O的直径,AC切⊙O于A,BC交⊙O于点D,若∠C=70°,则∠AOD的度数为( )
A.70° B.35° C.20° D.40°
如图,四边形ABCD四条边上的中点分别为E、F、G、H,顺次连接EF、FG、GH、HE,得到四边形EFGH(即四边形ABCD的中点四边形).
(1)四边形EFGH的形状是______.
(2)当四边形ABCD的对角线满足______ 条件时,四边形EFGH是矩形并证明你的结论.
(3)你学过的哪种特殊四边形的中点四边形是矩形?______ .
如图,把正方形纸片ABCD沿对边中点所在的直线对折后展开,折痕为MN,再过点B折叠纸片,使点A落在MN上的点F处,折痕为BE.若AB的长为2,则FM的长为( )
A. 2 B. C. D. 1
已知点A(0,4),B(4,0),C(10,0),点P在直线AB上,且∠OPC=90º,则点P的坐标为________________.
如图,直线y=kx+b(k、b为常数)分别与x轴、y轴交于点A(﹣4,0)、B(0,3),抛物线y=﹣x2+2x+1与y轴交于点C,点E在抛物线y=﹣x2+2x+1的对称轴上移动,点F在直线AB上移动,CE+EF的最小值是( )
A. 1.4 B. 2.5 C. 2.8 D. 3
红细胞的直径约为0.0000077米,0.0000077用科学记数法表示为____________.
在函数y=中,自变量x的取值范围是( )
A. x>2 B. x<2 C. x≠2 D. x≥2
计算的值是________.
二次函数y=ax2+bx+4的图象与x轴交于两点A、B,与y轴交于点C,且A(﹣1,0)、B(4,0).
(1)求此二次函数的表达式;
(2)如图1,抛物线的对称轴m与x轴交于点E,CD⊥m,垂足为D,点F(﹣,0),动点N在线段DE上运动,连接CF、CN、FN,若以点C、D、N为顶点的三角形与△FEN相似,求点N的坐标;
(3)如图2,点M在抛物线上,且点M的横坐标是1,将射线MA绕点M逆时针旋转45°,交抛物线于点P,求点P的坐标.