题目内容
如图1,在同一平面内,将两个全等的等腰直角三角形ABC和AFG摆放在一起,A为公共顶点,∠BAC=∠AGF=90°,它们的斜边长为
,若∆ABC固定不动,∆AFG绕点A旋转,AF、AG与边BC的交点分别为D、E(点D不与点B重合,点E不与点C重合),设BE=m,CD=n

(1)请在图1中找出两对相似而不全等的三角形,并选取其中一对证明它们相似;
(2)根据图1,求m与n的函数关系式,直接写出自变量n的取值范围;
(3)以∆ABC的斜边BC所在的直线为x轴,BC边上的高所在的直线为y轴,建立平面直角坐标系(如图2). 旋转∆AFG,使得BD=CE,求出D点的坐标,并通过计算验证
;
(4)在旋转过程中,(3)中的等量关系
是否始终成立,若成立,请证明,若不成立,请说明理由.
(1)请在图1中找出两对相似而不全等的三角形,并选取其中一对证明它们相似;
(2)根据图1,求m与n的函数关系式,直接写出自变量n的取值范围;
(3)以∆ABC的斜边BC所在的直线为x轴,BC边上的高所在的直线为y轴,建立平面直角坐标系(如图2). 旋转∆AFG,使得BD=CE,求出D点的坐标,并通过计算验证
(4)在旋转过程中,(3)中的等量关系
(1)∆ABE∽∆DAE, ∆ABE∽∆DCA,证明见解析(2)

(3)(1-
,0),证明见解析(4)成立,证明见解析
(3)(1-
解:(1)∆ABE∽∆DAE, ∆ABE∽∆DCA 1分
∵∠BAE=∠BAD+45°,∠CDA=∠BAD+45°∴∠BAE=∠CDA 又∠B=∠C=45°
∴∆ABE∽∆DCA 3分
(2)∵∆ABE∽∆DCA ∴
由依题意可知
∴
5分
自变量n的取值范围为
6分
(3) ∵BD=CE,
∴BE=CD.
∵AB=AC,∠ABC=∠ACB=45°,
∴△ABE≌△ACD.
∴AD=AE.
∵△BAE∽△CDA,
∴CD=AB=
,易得CO=1.
∴OD=
-1,那么点D的坐标为(1-
,0).
∵BD=2-
,CE=2-
,DE=2-2BD=2
-2,
∴BD2+CE2=DE2.
(4)成立 10分
证明:如图,将∆ACE绕点A顺时针旋转90°至∆ABH的位置,则CE=HB,AE=AH,

∠ABH=∠C=45°,旋转角∠EAH="90°." 连接HD,在∆EAD和∆HAD中
∵AE=AH, ∠HAD=∠EAH-∠FAG=45°=∠EAD, AD=AD.∴∆EAD≌∆HAD
∴DH=DE 又∠HBD=∠ABH+∠ABD=90°
∴BD
+HB
=DH
即BD
+CE
=DE
12分
(1)根据“AAA”,可知△ABE∽△DAE,△DCA∽△DAE;
(2)由(1)知,△ABE∽△DAE,△DCA∽△DAE,则有△ABE∽△DCA,因为相似三角形的对应边成比例,所以,
,再把已知数据代入求解即可.
(3)由BD=CE得BE=CD,那么可得△ABE≌△ACD,则AD=AE,加上(1)中的相似,可得CD="AB="
,由OC=1得到点D的坐标,进而表示出所求的代数式.
(4)可旋转一特殊角的度数,求解,得到一般结论.
∵∠BAE=∠BAD+45°,∠CDA=∠BAD+45°∴∠BAE=∠CDA 又∠B=∠C=45°
∴∆ABE∽∆DCA 3分
(2)∵∆ABE∽∆DCA ∴
∴
自变量n的取值范围为
(3) ∵BD=CE,
∴BE=CD.
∵AB=AC,∠ABC=∠ACB=45°,
∴△ABE≌△ACD.
∴AD=AE.
∵△BAE∽△CDA,
∴CD=AB=
∴OD=
∵BD=2-
∴BD2+CE2=DE2.
(4)成立 10分
证明:如图,将∆ACE绕点A顺时针旋转90°至∆ABH的位置,则CE=HB,AE=AH,
∠ABH=∠C=45°,旋转角∠EAH="90°." 连接HD,在∆EAD和∆HAD中
∵AE=AH, ∠HAD=∠EAH-∠FAG=45°=∠EAD, AD=AD.∴∆EAD≌∆HAD
∴DH=DE 又∠HBD=∠ABH+∠ABD=90°
∴BD
(1)根据“AAA”,可知△ABE∽△DAE,△DCA∽△DAE;
(2)由(1)知,△ABE∽△DAE,△DCA∽△DAE,则有△ABE∽△DCA,因为相似三角形的对应边成比例,所以,
(3)由BD=CE得BE=CD,那么可得△ABE≌△ACD,则AD=AE,加上(1)中的相似,可得CD="AB="
(4)可旋转一特殊角的度数,求解,得到一般结论.
练习册系列答案
相关题目