题目内容
如果一个正多边形的中心角为45°,那么这个正多边形的边数是 .
如图,透明的圆柱形容器(容器厚度忽略不计)的高为12cm,底面周长为10cm,在容器内壁离容器底部3cm的点B处有一饭粒,此时一只蚂蚁正好在容器外壁,且离容器上沿3cm的点A处,则蚂蚁吃到饭粒需爬行的最短路径是( )
A. 13cm B. 2cm C. cm D. 2cm
(1)计算:;
(2)化简并求值:,其中,.
如图,已知抛物线y=ax2+bx+4与x轴交于A(,0)、B两点,与y轴交于C点,其对称轴为直线x=1.
(1)直接写出抛物线的解析式 :
(2)把线段AC沿x轴向右平移,设平移后A、C的对应点分别为A′、C′,当C′落在抛物线上时,求A′、C′的坐标;
(3)除(2)中的点A′、C′外,在x轴和抛物线上是否还分别存在点E、F,使得以A、C、E、F为顶点的四边形为平行四边形,若存在,求出E、F的坐标;若不存在,请说明理由.
如图,已知点P为ΔABC边BC上一点.请用直尺和圆规作一条直线EF,使得点A关于EF的对称点为点P(保留作图痕迹,不写作法)
把直线y=-x+2向上平移a个单位后,与直线y=2x+3的交点在第二象限,则a的取值范围是( )
A. a>1 B. <a<0 C. <a<1 D. a<1
某办公用品销售商店推出两种优惠方法:①购1个书包,赠送1支水性笔;②购书包和水性笔一律按9折优惠.书包每个定价20元,水性笔每支定价5元.小丽和同学需买4个书包,水性笔若干支(不少于4支).
(1)分别写出两种优惠方法购买费用y(元)与所买水性笔支数x(支)之间的关系式;
(2)对x的取值情况进行分析,说明按哪种优惠方法购买比较便宜.
对于实数a,b,我们可以用min{a,b}表示a,b两数中较小的数,例如min{3,﹣1}=﹣1,min{2,2}=2.类似地,若函数y1、y2都是x的函数,则y=min{y1,y2}表示函数y1和y2的“取小函数”.
(1)设y1=x,y2=,则函数y=min{x,}的图象应该是 中的实线部分.
(2)请在图1中用粗实线描出函数y=min{(x﹣2)2,(x+2)2}的图象,并写出该图象的三条不同性质:
① ;② ;③ ;
(3)函数y=min{(x﹣4)2,(x+2)2}的图象关于 对称.
如图,菱形ABCD中,对角线AC与BD相交于点O,且AC=8,BD=6,则菱形ABCD的高DH= .