题目内容
【题目】已知甲乙两车分别从A、B两地出发,相向匀速行驶,已知乙车先出发,1小时后甲车再出发.一段时间后,甲乙两车在休息站C地相遇:到达C地后,乙车不休息继续按原速前往A地,甲车休息半小时后再按原速前往B地,甲车到达B地停止运动;乙车到A地后立刻原速返回B地,已知两车间的距离y(km)随乙车运动的时间x(h)变化如图,则当甲车到达B地时,乙车距离B地的距离为_____(km).
![]()
【答案】360
【解析】
先从图象中获取信息得知A,B两地之间的距离及乙的行驶时间求出乙车的速度,然后再根据两车的相遇时间求出甲的速度,然后求出甲车行完全程的时间,就可以算出此时乙车的行驶时间,用总时间减去甲行完全程时的时间求出乙车剩下的时间,再乘以乙车的速度即可求出路程.
由图象可知,A、B两地相距990千米,而乙来回用时22小时,因此乙车的速度为:
990÷(22÷2)=90千米/小时,
甲乙两车在C地相遇后,甲休息0.5小时,乙继续走,所以乙车出发7小时后两车相遇,因此甲车速度为:
(990﹣90×7)÷(7﹣1)=60千米/小时,
甲车行完全程的时间为:990÷60=16.5小时,此时乙车已经行驶16.5+0.5+1=18小时,
因此乙车距B地还剩22﹣18=4小时的路程,
所以当甲车到达B地时,乙车距离B地的距离为90×4=360千米,
故答案为:360.
练习册系列答案
相关题目