题目内容
如图,已知, ,则的度数是( ).
A. B. C. D.
问题探究:
如图1,△ACB和△DCE均为等边三角形,点A、D、E在同一直线上,连接BE.
(1)证明:AD=BE;
(2)求∠AEB的度数.
问题变式:
如图2,△ACB和△DCE均为等腰直角三角形,∠ACB=∠DCE=90°,点A、D、E在同一直线上,CM为△DCE中DE边上的高,连接BE.请求出∠AEB的度数以及判断线段CM、AE、BE之间的数量关系,并说明理由.
如图,直线l经过第一、二、四象限,l的解析式是y=(m﹣3)x+m+2,则m的取值范围在数轴上表示为( )
化简分式,并从, , , , 中选一个能使分式有意义的数代入求值.
如图,菱形的对角线的长分别为和, 是对角线上任一点(点不与点、重合)且交于, 交于,则阴影部分的面积是( ).
如图,⊙O的直径AB=12cm,C为AB延长线上一点,CP与⊙O相切于点P,过点B作弦BD∥CP,连接PD.
(1)求证:点P为 的中点;
(2)若∠C=∠D,求四边形BCPD的面积.
如图,在正方形ABCD内作∠EAF=45°,AE交BC于点E,AF交CD于点F,连接EF,过点A作AH⊥EF,垂足为H,将△ADF绕点A顺时针旋转90°得到△ABG,若BE=2,DF=3,则AH的长为_____.
2017的倒数是( )
A. B. ﹣ C. 2017 D. ﹣2017
如图在平面直角坐标系中,抛物线y=(x﹣h)2与x轴只有一个交点M,与平行于x轴的直线l交于A,B两点.若AB=3,则点M到直线l的距离为( )
A. B. C. 2 D.