题目内容
用适当的方法进行简便计算:(1)(-32
| 1 |
| 2 |
| 1 |
| 4 |
| 1 |
| 7 |
| 1 |
| 4 |
| 6 |
| 7 |
(2)25×
| 3 |
| 4 |
| 1 |
| 2 |
| 1 |
| 4 |
分析:(1)把分母相同的先放在一起计算;
(2)把相同的因式25先提取出.
(2)把相同的因式25先提取出.
解答:解:(1)原式=(-32
)-(5
-3
-5
-2
)
=-32
-5
+3
+5
+2
=-32
+(5
-5
)+(3
+2
)
=-26
;
(2)原式=25×
+25×
+25×(-
)
=25×[
+
+(-
)]
=25.
| 1 |
| 2 |
| 1 |
| 4 |
| 1 |
| 7 |
| 1 |
| 4 |
| 6 |
| 7 |
=-32
| 1 |
| 2 |
| 1 |
| 4 |
| 1 |
| 7 |
| 1 |
| 4 |
| 6 |
| 7 |
=-32
| 1 |
| 2 |
| 1 |
| 4 |
| 1 |
| 4 |
| 1 |
| 7 |
| 6 |
| 7 |
=-26
| 1 |
| 2 |
(2)原式=25×
| 3 |
| 4 |
| 1 |
| 2 |
| 1 |
| 4 |
=25×[
| 3 |
| 4 |
| 1 |
| 2 |
| 1 |
| 4 |
=25.
点评:本题应用了:①加法的交换律:a+b=b+a;
②加法的结合律:(a+b)+c=a+(b+c);
③乘法的分配律的逆运算:ab+ac=a(b+c).
②加法的结合律:(a+b)+c=a+(b+c);
③乘法的分配律的逆运算:ab+ac=a(b+c).
练习册系列答案
相关题目