题目内容

(2002•黄石)已知⊙O的半径OA=1,弦AB、AC的长分别是,则∠BAC的度数是   
【答案】分析:根据垂径定理和勾股定理可得.
解答:解:分别作OD⊥AB,OE⊥AC,垂足分别是D、E.
∵OE⊥AC,OD⊥AB,根据垂径定理得AE=AC=,AD=AB=
∴sin∠AOE===,sin∠AOD==
根据特殊角的三角函数值可得∠AOE=60°,∠AOD=45°,
∴∠BAO=45°,∠CAO=90°-60°=30°,
∴∠BAC=45°+30°=75°,
或∠BAC′=45°-30°=15°.
故答案为:15°或75°.
点评:此题主要考查了垂径定理和勾股定理.注意要考虑到两种情况.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网