题目内容
A、B两地相距340千米,甲、乙两车分别从A、B两地同时出发,相向而行,匀速行驶.在距离A、B两地的中点10千米处两车相遇,设甲车速度为V1千米/时,乙车的速度为V2千米/时,则V1:V2等于
- A.8:7
- B.8:9
- C.8:7或7:8
- D.8:9或9:8
D
分析:根据在距离A、B两地的中点10千米处两车相遇,分别得出两人行驶的路程,利用两人行驶时间相同得出答案即可.
解答:根据在距离A、B两地的中点10千米处两车相遇,
则假设甲的速度快,则他行驶的路程为:340÷2+10=180千米,乙的速度慢,则他行驶的路程为:340÷2-10=160千米,
则
=
,
故
=
=
,
当乙的速度快,则他行驶的路程为:340÷2+10=180千米,甲的速度慢,则他行驶的路程为:340÷2-10=160千米,
则
=
,
故
=
=
,
则V1:V2等于8:9或9:8.
故选:D.
点评:此题主要考查了分式方程的应用,根据两人行驶时间相同得出等式是解题关键.
分析:根据在距离A、B两地的中点10千米处两车相遇,分别得出两人行驶的路程,利用两人行驶时间相同得出答案即可.
解答:根据在距离A、B两地的中点10千米处两车相遇,
则假设甲的速度快,则他行驶的路程为:340÷2+10=180千米,乙的速度慢,则他行驶的路程为:340÷2-10=160千米,
则
故
当乙的速度快,则他行驶的路程为:340÷2+10=180千米,甲的速度慢,则他行驶的路程为:340÷2-10=160千米,
则
故
则V1:V2等于8:9或9:8.
故选:D.
点评:此题主要考查了分式方程的应用,根据两人行驶时间相同得出等式是解题关键.
练习册系列答案
相关题目