题目内容
如图,在△ABC中,AC=BC,∠C=90°,AD是△ABC的角平分线,DE⊥AB,垂足为E.
(1)已知CD=4cm,求AC的长.
(2)求证:AB=AC+CD.
解:(1)∵AD是△ABC的角平分线,DC⊥AC,DE⊥AB
∴DE=CD=4cm, 又∵AC=BC,∴∠B=∠BAC,
又∵∠C=90º,∴∠B=∠B DE=45º,∴BE=DE
在等腰直角三角形BDE中,由勾股定理得,BD=
cm
∴AC=BC=CD+BD=4+
(cm)
(2)由(1)的求解过程可知:△ACD≌△AED,
∴AC=AE, 又∵BE=DE=CD ∴AB=AE+BE=AC+CD
练习册系列答案
相关题目