题目内容
一个正多边形的每一个外角都是36°,则它是( )
A. 正六边形 B. 正八边形
C. 正九边形 D. 正十边形
如图,点C在线段AB上,AC=6cm,MB=10cm,点M、N分别为AC、BC的中点.
(1)求线段BC的长;
(2)求线段MN的长;
(3)若C在线段AB延长线上,且满足AC﹣BC=b cm,M,N分别是线段AC,BC的中点,你能猜想MN的长度吗?请写出你的结论(不需要说明理由).
已知抛物线y=ax2+bx+c(0<2a≤b)与x轴最多有一个交点.以下四个结论:
①abc>0;
②该抛物线的对称轴在x=﹣1的右侧;
③关于x的方程ax2+bx+c+1=0无实数根;
④≥2.
其中,正确结论的个数为( )
A. 1个 B. 2个 C. 3个 D. 4个
如图,在四边形ABCD中,∠A=90°,∠D=40°,则∠B+∠C为__________.
如图,在五边形ABCDE中,∠A+∠B+∠E=300°,DP、CP分别平分∠EDC、∠BCD,则∠P的度数是( )
A. 50° B. 55° C. 60° D. 65°
如图,正比例函数的图象与反比例函数的图象交于A、B两点,过点A作AC垂直x轴于点C,连结BC.若△ABC的面积为2.
(1)求k的值;
(2)x轴上是否存在一点D,使△ABD为直角三角形?若存在,求出点D的坐标;若不存在,请说明理由.
已知圆锥的底面半径是3,高是4,则这个圆锥的全面积是__
解不等式组
某中学为了绿化校园,计划购买一批榕树和香樟树,经市场调查榕树的单价比香樟树少20元,购买3棵榕树和2棵香樟树共需340元.
(1)请问榕树和香樟树的单价各多少?
(2)根据学校实际情况,需购买两种树苗共150棵,总费用不超过10840元,且购买香樟树的棵数不少于榕树的1.5倍,请你算算,该校本次购买榕树和香樟树共有哪几种方案.