题目内容
请写出一个开口向上,并且与y轴的交点为(0,0)的抛物线解析式是__________.
如图所示,P是菱形ABCD的对角线AC上一动点,过P垂直于AC的直线交菱形ABCD的边于M、N两点,设AC=2,BD=1,AP=x,△AMN的面积为y,则y关于x的函数图象的大致形状是( )
A. B. C. D.
若a<b<0,则1,1-a,1-b这三个数最大的是________________.
某种商品的进价为每件50元,售价为每件60元,每个月可卖出200件;如果每件商品的售价上涨1元,则每个月少卖10件.设每件商品的售价上涨x元(x为整数),每个月的销售利润为y元.
(1)求y与x的函数关系式;
(2)若商场某个月要盈利1250元,求每件商品应上涨多少元?
(3)每件商品的售价定为多少元时,每个月可获得最大利润?最大利润是多少元?
函数(k、b为常数)的图象如图所示,则关于x的不等式>0的解集是 .
抛物线的图象向左平移3个单位,所得抛物线的解析式为( ).
已知一个三角形的两条边长分别是1cm和2cm,一个内角为40度.
(1)请你借助图1画出一个满足题设条件的三角形;
(2)你是否还能画出既满足题设条件,又与(1)中所画的三角形不全等的三角形?若能,请你在图1的右边用“尺规作图”作出所有这样的三角形;若不能,请说明理由;
(3)如果将题设条件改为“三角形的两条边长分别是3cm和4cm,一个内角为40°”,那么满足这一条件,且彼此不全等的三角形共有几个.
友情提醒:请在你画的图中标出已知角的度数和已知边的长度,“尺规作图”不要求写作法,但要保留作图痕迹.
(1)36的平方根是__;
(2)=__.
我市某蔬菜生产基地在气温较低时,用装有恒温系统的大棚栽培一种在自然光照且温度为18℃的条件下生长最快的新品种.如图是某天恒温系统从开启到关闭及关闭后,大棚内温度y(℃)随时间x(小时)变化的函数图象,其中BC段是双曲线的一部分.请根据图中信息解答下列问题:
(1)恒温系统在这天保持大棚内温度18℃的时间有多少小时?
(2)求k的值;
(3)当x=16时,大棚内的温度约为多少度?