题目内容
已知二次函数y=ax2+bx+c,当x=-1时有最小值-4,且图象在x轴上截得线段长为4,求函数解析式.
y=x2+2x-3
解:∵抛物线对称轴为x=-1,图象在x轴上截得线段长为4,
∴抛物线与x轴两交点坐标为(-3,0),(1,0),
设抛物线解析式为y=a(x+3)(x-1),
将顶点坐标(-1,-4)代入,得a(-1+3)(-1-1)=-4,
解得a=1,
∴抛物线解析式为y=(x+3)(x-1),即y=x2+2x-3.
解:∵抛物线对称轴为x=-1,图象在x轴上截得线段长为4,
∴抛物线与x轴两交点坐标为(-3,0),(1,0),
设抛物线解析式为y=a(x+3)(x-1),
将顶点坐标(-1,-4)代入,得a(-1+3)(-1-1)=-4,
解得a=1,
∴抛物线解析式为y=(x+3)(x-1),即y=x2+2x-3.
练习册系列答案
相关题目
已知二次函数y=ax+bx+c(a≠0,a,b,c为常数),对称轴为直线x=1,它的部分自变量与函数值y的对应值如下表,写出方程ax2+bx+c=0的一个正数解的近似值________(精确到0.1).
| x | -0.1 | -0.2 | -0.3 | -0.4 |
| y=ax2+bx+c | -0.58 | -0.12 | 0.38 | 0.92 |