题目内容

已知二次函数y=ax2+bx+c,当x=3,函数取得最大值10,且它的图象在x轴上截得的线段长为4,试求二次函数的表达式.

解:设抛物线与x轴的交点的横坐标为x1,x2
∴x1+x2=-
x1•x2=
∴|x1-x2|===4,①
而x=3时取得最大值10,
∴-=3,②
=10,③
联立①②③解得:
a=-,b=15,c=-
则该抛物线的解析式为:y=-x2+15x-
分析:设抛物线与x轴的交点的横坐标为x1,x2,那么可以得到|x1-x2|=,然后利用根与系数的关系和已知可以得到关于a、b、c的方程,又x=3时取得最大值10,由此可以得到关于a、b、c的方程,解这些方程组成的方程组即可求解.
点评:此题主要考查了抛物线与x轴的交点、根与系数的关系、二次函数的最值等知识,解题的关键是利用前面的知识建立关于a、b、c的方程组,解方程组即可解决问题.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网