题目内容
用简便方法计算
(1)20102-2011×2009
(2)(1-
)(1-
)(1-
)…(1-
)(1-
)
(1)20102-2011×2009
(2)(1-
| 1 |
| 22 |
| 1 |
| 32 |
| 1 |
| 42 |
| 1 |
| 92 |
| 1 |
| 102 |
(1)原式=20102-(2010+1)
=20102-(20102-1)
=20102-20102+1
=1;
(2)原式=(1-
)(1+
)(1-
)(1+
)(1-
)(1+
)…(1-
)(1+
)(1-
)(1-
)
=
×
×
×
×
×
×…×
×
×
=
×
=
.
=20102-(20102-1)
=20102-20102+1
=1;
(2)原式=(1-
| 1 |
| 2 |
| 1 |
| 2 |
| 1 |
| 3 |
| 1 |
| 3 |
| 1 |
| 4 |
| 1 |
| 4 |
| 1 |
| 9 |
| 1 |
| 9 |
| 1 |
| 10 |
| 1 |
| 10 |
=
| 1 |
| 2 |
| 3 |
| 2 |
| 2 |
| 3 |
| 4 |
| 3 |
| 3 |
| 4 |
| 5 |
| 4 |
| 8 |
| 9 |
| 9 |
| 10 |
| 11 |
| 10 |
=
| 1 |
| 2 |
| 11 |
| 10 |
=
| 11 |
| 20 |
练习册系列答案
相关题目