题目内容
【题目】△ABC 中,AB=AC=12 厘米,∠B=∠C,BC=8 厘米,点 D 为 AB 的中点.如果点 P 在线段 BC 上以 2 厘米/秒 的速度由 B 点向 C 点运动,同时,点 Q 在线段 CA 上由 C 点向 A 点运动.若点 Q 的运动速度为 v 厘米/秒,则当△BPD 与△CQP 全等时,v 的值为( )
![]()
A.2B.5C.1 或 5D.2 或 3
【答案】D
【解析】
此题要分两种情况:①当BD=PC时,△BPD与△CQP全等,计算出BP的长,进而可得运动时间,然后再求v;②当BD=CQ时,△BDP≌△QCP,计算出BP的长,进而可得运动时间,然后再求v.
当BD=PC时,△BPD与△CQP全等,
∵点D为AB的中点,
∴BD=
AB=6cm,
∵BD=PC,
∴BP=8-6=2(cm),
∵点P在线段BC上以2厘米/秒的速度由B点向C点运动,
∴运动时间时1s,
∵△DBP≌△PCQ,
∴BP=CQ=2cm,
![]()
∴v=2÷1=2;
当BD=CQ时,△BDP≌△QCP,
∵BD=6cm,PB=PC,
∴QC=6cm,
∵BC=8cm,
∴BP=4cm,
∴运动时间为4÷2=2(s),
∴v=6÷2=3(m/s),
故选:D.
练习册系列答案
相关题目