题目内容
如图,已知AD∥BC,∠B=32°,BD平分∠ADE,则∠DEC=_____.
如图,每个小正方形的边长都是1,点A,B,C都在小正方形的顶点上,则∠ABC的正弦值为____。
海中有一灯塔C,它的周围12海里有暗礁,渔船跟踪鱼群由西向东航行在A处测得灯塔C在北偏东60°,航行20海里后到达B点,这时测得灯塔C在北偏东30°,如果渔船不改变航向,继续向东航行,有没有触礁的危险?
已知,直线AB∥DC,点P为平面上一点,连接AP与CP.
(1)如图1,点P在直线AB、CD之间,当∠BAP=60°,∠DCP=20°时,求∠APC.
(2)如图2,点P在直线AB、CD之间,∠BAP与∠DCP的角平分线相交于点K,写出∠AKC与∠APC之间的数量关系,并说明理由.
(3)如图3,点P落在CD外,∠BAP与∠DCP的角平分线相交于点K,∠AKC与∠APC有何数量关系?并说明理由.
为了从500只外形相同的鸡蛋中找到唯一的一只双黄蛋,检查员将这些鸡蛋按1﹣500的顺序排成一列,第一次先从中取出序号为单数的蛋,发现其中没有双黄蛋,他将剩下的蛋的原来位置上又按1﹣250编号(即原来的2号变为1号,原来的4号变成2号,…,原来的500号变成250号).又从中取出新序号为单数的蛋进行检查,任没有发现双黄蛋,…,如此下去,检查到最后的一个是双黄蛋,问这只双黄蛋最初的序号是 .
如图,直线a//b,直角三角形如图放置,∠DCB=90°,若∠1+∠B=65°,则∠2的度数为( )
A. 20° B. 25° C. 30° D. 35°
“边疆宣讲团”从招待所出发,动身前往某边防哨所去为哨所官兵宣讲“十九大”精神.若按照他们出发时的速度匀速直线行进,则刚好在约定的时间准点到达哨所; 可天有不测风云! 因道路交通事故,他们中途被迫停留了半小时; 为按约定时
间准点到达哨所,他们后来加快速度但仍保持匀速直线行进,结果正好准点到达哨所.如图7,是他们离哨所的距离y(km)与所用时间x(h)之间的部分函数图象.根据图象,解答下列问题:
(1)求CD所在直线的表达式;
(2)求招待所离哨所的距离.
方程组的解是( )
A. B. C. D.
如图,在平面直角坐标系中,直线AB与y轴在正半轴、x轴正半轴分别交A、B两点,M在BA的延长线上,PA平分∠MAO,PB平分∠ABO,则∠P的度数是( )
A. 30° B. 45° C. 55° D. 60°