题目内容
如图,在△ABC中,D为BC边的中点,E为AC边上的任意一点,BE交AD与点O,某学生在研究这一问题时,发现了如下事实,①当
| AE |
| AC |
| 1 |
| 2 |
| 1 |
| 1+1 |
| AO |
| AD |
| 2 |
| 3 |
| 2 |
| 2+1 |
②当
| AE |
| AC |
| 1 |
| 3 |
| 1 |
| 1+2 |
| AO |
| AD |
| 2 |
| 4 |
| 2 |
| 2+2 |
③
| AE |
| AC |
| 1 |
| 4 |
| 1 |
| 1+3 |
| AO |
| AD |
| 2 |
| 5 |
| 2 |
| 2+3 |
如图4中,当
| AE |
| AC |
| 1 |
| 1+n |
| AO |
| AD |
分析:过D作DF∥BE,即求AO:AD=AE:AF,因为
=
,可以根据平行线分线段成比例,及线段相互间的关系即可得出AE:AF=2:(n+2),即
=
.
| AE |
| AC |
| 1 |
| 1+n |
| AO |
| AD |
| 2 |
| n+2 |
解答:
解:猜想
=
.
证明:过D作DF∥BE,
∴AO:AD=AE:AF.
∵D为BC边的中点,
∴CF=EF=
EC.
∵
=
,
∴AE:(AE+2EF)=1:(1+n).
∴AE:EF=2:n.
∴AE:AF=2:(n+2),即
=
.
| AO |
| AD |
| 2 |
| n+2 |
证明:过D作DF∥BE,
∴AO:AD=AE:AF.
∵D为BC边的中点,
∴CF=EF=
| 1 |
| 2 |
∵
| AE |
| AC |
| 1 |
| 1+n |
∴AE:(AE+2EF)=1:(1+n).
∴AE:EF=2:n.
∴AE:AF=2:(n+2),即
| AO |
| AD |
| 2 |
| n+2 |
点评:本题考查平行线分线段定理及其应用,有一定难度,注意D为BC边的中点的运用.
练习册系列答案
相关题目