ÌâÄ¿ÄÚÈÝ
£¨1£©³ö·¢2Ãëºó£¬ÇóPQµÄ³¤£»
£¨2£©ÔÚÔ˶¯¹ý³ÌÖУ¬¡÷PQBÄÜÐγɵÈÑüÈý½ÇÐÎÂð£¿ÈôÄÜ£¬ÔòÇó³ö¼¸ÃëºóµÚÒ»´ÎÐγɵÈÑüÈý½ÇÐΣ»Èô²»ÄÜ£¬Ôò˵Ã÷ÀíÓÉ£»
£¨3£©´Ó³ö·¢¼¸Ãëºó£¬Ïß¶ÎPQµÚÒ»´Î°ÑÖ±½ÇÈý½ÇÐÎÖܳ¤·Ö³ÉÏàµÈµÄÁ½²¿·Ö£¿
·ÖÎö£º£¨1£©Çó³öAP¡¢BP¡¢BQ£¬¸ù¾Ý¹´¹É¶¨ÀíÇó³öPQ¼´¿É£®
£¨2£©¸ù¾ÝµÈÑüÖ±½ÇÈý½ÇÐεóöBP=BQ£¬´úÈëµÃ³ö·½³Ì£¬Çó³ö·½³ÌµÄ½â¼´¿É£®
£¨3£©¸ù¾ÝÖܳ¤ÏàµÈµÃ³ö10+t+£¨6-2t£©=8-t+2t£¬Çó³ö¼´¿É£®
£¨2£©¸ù¾ÝµÈÑüÖ±½ÇÈý½ÇÐεóöBP=BQ£¬´úÈëµÃ³ö·½³Ì£¬Çó³ö·½³ÌµÄ½â¼´¿É£®
£¨3£©¸ù¾ÝÖܳ¤ÏàµÈµÃ³ö10+t+£¨6-2t£©=8-t+2t£¬Çó³ö¼´¿É£®
½â´ð£º½â£º£¨1£©¡ß³ö·¢2ÃëºóAP=2cm£¬
¡àBP=8-2=6£¨cm£©£¬
BQ=2¡Á2=4£¨cm£©£¬
ÔÚRT¡÷PQBÖУ¬Óɹ´¹É¶¨ÀíµÃ£ºPQ=
=
=2
£¨cm£©
¼´³ö·¢2Ãëºó£¬ÇóPQµÄ³¤Îª2
cm£®
£¨2£©ÔÚÔ˶¯¹ý³ÌÖУ¬¡÷PQBÄÜÐγɵÈÑüÈý½ÇÐΣ¬
AP=t£¬BP=AB-AP=8-t£»BQ=2t
ÓÉPB=BQµÃ£º8-t=2t
½âµÃt=
£¨Ã룩£¬
¼´³ö·¢
ÃëºóµÚÒ»´ÎÐγɵÈÑüÈý½ÇÐΣ®
£¨3£©Rt¡÷ABCÖÐÓɹ´¹É¶¨ÀíµÃ£ºAC=
=
=10£¨cm£©£»
¡ßAP=t£¬BP=AB-AP=8-t£¬BQ=2t£¬QC=6-2t£¬
ÓÖ¡ßÏß¶ÎPQµÚÒ»´Î°ÑÖ±½ÇÈý½ÇÐÎÖܳ¤·Ö³ÉÏàµÈµÄÁ½²¿·Ö£¬
¡àÓÉÖܳ¤ÏàµÈµÃ£ºAC+AP+QC=PB+BQ
10+t+£¨6-2t£©=8-t+2t
½âµÃt=4£¨cm£©
¼´´Ó³ö·¢4Ãëºó£¬Ïß¶ÎPQµÚÒ»´Î°ÑÖ±½ÇÈý½ÇÐÎÖܳ¤·Ö³ÉÏàµÈµÄÁ½²¿·Ö£®
¡àBP=8-2=6£¨cm£©£¬
BQ=2¡Á2=4£¨cm£©£¬
ÔÚRT¡÷PQBÖУ¬Óɹ´¹É¶¨ÀíµÃ£ºPQ=
| PB2+BP2 |
| 62+42 |
| 13 |
¼´³ö·¢2Ãëºó£¬ÇóPQµÄ³¤Îª2
| 13 |
£¨2£©ÔÚÔ˶¯¹ý³ÌÖУ¬¡÷PQBÄÜÐγɵÈÑüÈý½ÇÐΣ¬
AP=t£¬BP=AB-AP=8-t£»BQ=2t
ÓÉPB=BQµÃ£º8-t=2t
½âµÃt=
| 8 |
| 3 |
¼´³ö·¢
| 8 |
| 3 |
£¨3£©Rt¡÷ABCÖÐÓɹ´¹É¶¨ÀíµÃ£ºAC=
| AB2+BC2 |
| 82+62 |
¡ßAP=t£¬BP=AB-AP=8-t£¬BQ=2t£¬QC=6-2t£¬
ÓÖ¡ßÏß¶ÎPQµÚÒ»´Î°ÑÖ±½ÇÈý½ÇÐÎÖܳ¤·Ö³ÉÏàµÈµÄÁ½²¿·Ö£¬
¡àÓÉÖܳ¤ÏàµÈµÃ£ºAC+AP+QC=PB+BQ
10+t+£¨6-2t£©=8-t+2t
½âµÃt=4£¨cm£©
¼´´Ó³ö·¢4Ãëºó£¬Ïß¶ÎPQµÚÒ»´Î°ÑÖ±½ÇÈý½ÇÐÎÖܳ¤·Ö³ÉÏàµÈµÄÁ½²¿·Ö£®
µãÆÀ£º±¾Ì⿼²éÁ˵ÈÑüÈý½ÇÐÎÐÔÖÊ£¬¹´¹É¶¨ÀíµÄÓ¦Óã¬ÓÃÁË·½³Ì˼Ï룮
Á·Ï°²áϵÁдð°¸
Ïà¹ØÌâÄ¿