题目内容
如图,A,B,D,E四点在⊙O上,AE,BD的延长线相交于点C,直径AE为8,OC=12,∠EDC=∠BAO.
(1)求证:
;
(2)计算CD•CB的值,并指出CB的取值范围.
∴∠EDC=∠BAO,∠C=∠C,
∴△CDE∽△CAB,
∴
(2)解:
∵直径AE=8,OC=12,
∴AC=12+4=16,CE=12-4=8.
又∵
∴CD•CB=AC•CE=16×8=128.
连接OB,在△OBC中,OB=
∴故BC的范围是:8<BC<16.
分析:(1)证△CDE∽△CAB,再根据相似三角形的性质得到所求的比例式;
(2)根据割线定理即可求得CD•CB的值.根据三角形的三边关系求得BC的取值范围.
点评:本题主要考查圆、相似三角形等初中几何的重点知识,考查学生的几何论证能力,属于中等难度题.
练习册系列答案
相关题目