题目内容

一节数学课后,老师布置了一道课后练习题:如图6,在Rt△ABC中,AB=BC,∠ABC=90°,BO⊥AC于点O,点P,D分别在AO和BC上,PB=PD,DE⊥AC于点E.求证:△BPO≌△PDE.

理清思路,完成解答.

本题证明的思路可用下列框图表示:

根据上述思路,请你完整地书写本题的证明过程.

(2)特殊位置,证明结论.

若PB平分∠ABO,其余条件不变.求证:AP=CD.

(1)证明见解析;(2)证明见解析.

【解析】

试题分析:(1)求出∠3=∠4,∠BOP=∠PED=90°,根据AAS证△BPO≌△PDE即可;

(2)求出∠ABP=∠4,求出△ABP≌△CPD,即可得出答案;

(3)设OP=CP=x,求出AP=3x,CD=x,即可得出答案.

试题解析:(1)证明:∵PB=PD,

∴∠2=∠PBD,

∵AB=BC,∠ABC=90°,

∴∠C=45°,

∵BO⊥AC,

∴∠1=45°,

∴∠1=∠C=45°,

∵∠3=∠PBC-∠1,∠4=∠2-∠C,

∴∠3=∠4,

∵BO⊥AC,DE⊥AC,

∴∠BOP=∠PED=90°,

在△BPO和△PDE中

∴△BPO≌△PDE(AAS);

(2)证明:由(1)可得:∠3=∠4,

∵BP平分∠ABO,

∴∠ABP=∠3,

∴∠ABP=∠4,

在△ABP和△CPD中

∴△ABP≌△CPD(AAS),

∴AP=CD.

(3)【解析】
CD′与AP′的数量关系是CD′=AP′.

理由是:设OP=PC=x,则AO=OC=2x=BO,

则AP=2x+x=3x,

由△OBP≌△EPD,得BO=PE,

PE=2x,CE=2x-x=x,

∵∠E=90°,∠ECD=∠ACB=45°,

∴DE=x,由勾股定理得:CD=x,

即AP=3x,CD=x,

∴CD′与AP′的数量关系是CD′=AP′

考点:全等三角形的判定与性质.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网