题目内容

(2005•中山)如图,等腰梯形ABCD中,AD∥BC,M、N分别是AD、BC的中点,E、F分别是BM、CM中点.
(1)求证:四边形MENF是菱形;
(2)若四边形MENF是正方形,请探索等腰梯形ABCD的高和底边BC的数量关系,并证明你的结论.

【答案】分析:(1)根据等腰梯形的中位线的性质求出四边形四边相等即可;
(2)利用等腰梯形的性质和正方形的性质解答.
解答:(1)证明:∵四边形ABCD为等腰梯形,
∴AB=CD,∠A=∠D.
∵M为AD的中点,
∴AM=DM.(2分)
∴△ABM≌△DCM.(1分)
∴BM=CM.(1分)
∵E、F、N分别是MB、CM、BC的中点,
∴EN、FN分别为△BMC的中位线,
∴EN=MC,FN=MB,
且ME=BE=MB,MF=FC=MC.
∴EN=FN=FM=EM.
∴四边形ENFM是菱形.(1分)

(2)解:结论:等腰梯形ABCD的高是底边BC的一半.
理由:连接MN,
∵BM=CM,BN=CN,
∴MN⊥BC.
∴MN是梯形ABCD的高.(2分)
又∵四边形MENF是正方形,
∴∠EMF=90°,
∴△BMC为直角三角形.
又∵N是BC的中点,
∴MN=BC.(1分)
即等腰梯形ABCD的高是底边BC的一半.
点评:本题比较复杂,涉及面较广,需要同学们把所学知识系统化,提高自己对所学知识的综合运用运用能力.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网