题目内容
(2011•陕西)在正方形ABCD中,点G是BC上任意一点,连接AG,过B,D两点分别作BE⊥AG,DF⊥AG,垂足分别为E,F两点,求证:△ADF≌△BAE.![]()
证明:∵四边形ABCD是正方形,
∴DA=AB,∠1+∠2=90°
又∵BE⊥AG,DF⊥AG
∴∠1+∠3=90°,∠2+∠4=
90°
∴∠2=∠3,∠1=∠4
∴△ADF≌△BAE
解析
练习册系列答案
相关题目
(2011•陕西)2011年4月28日,以“天人长安,创意自然一一城市与自然和谐共生”为主题的世界园艺博览会在西安隆重开园,这次园艺会的门票分为个人票和团体票两大类,其中个人票设置有三种:
| 票得种类 | 夜票(A) | 平日普通票(B) | 指定日普通票(C) |
| 单价(元/张) | 60 | 100 | 150 |
(1)写出y与x之间的函数关系式;
(2)设购票总费用为W元,求出W(元)与X(张)之间的函数关系式;
(3)若每种票至少购买1张,其中购买A种票不少于20张,则有几种购票方案?并求出购票总费用最少时,购买A,B,C三种票的张数.